
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Identification of tool and product effects in a mixed product and parallel
tool environment

Ming-Da Ma a, Chun-Cheng Chang b, David Shan-Hill Wong b,*, Shi-Shang Jang b,*

a Center for Control and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China
b Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043, Taiwan

a r t i c l e i n f o

Article history:
Received 20 February 2008
Received in revised form 27 May 2008
Accepted 26 July 2008

Keywords:
State estimation
ANOVA
Kalman filter
Run-to-run control

a b s t r a c t

In the semiconductor manufacturing industry, production resembles an automated assembly line in
which many similar products with slightly different specifications are manufactured step-by-step, with
each step being a complicated physiochemical batch process performed by a number of tools. This con-
stitutes a high-mix production system for which effective run-to-run control (RtR) and fault detection
control (FDC) can be carried out only if the states of different tools and different products can be esti-
mated. However, since in each production run, a specific product is performed on a specific tool, absolute
individual states of products and tools are not observable. In this work, a novel state estimation method
based on analysis of variance (ANOVA) is developed to estimate the relative states of each product and
tool to the grand average performance of this station in the fab. The method is formulated in the form
of a recursive state estimation using the Kalman filter. The advantages of this method are demonstrated
using simulations to show that the correct relative states can be estimated in production scenarios such
as tool-shift, tool-drift, product ramp-up, tool/product-offline and preventive maintenance (PM). Further-
more, application of this state estimation method in RtR control scheme shows that substantial improve-
ments in process capabilities can be gained, especially for products with small lot counts. The proposed
algorithm is also evaluated by an industrial application.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The semiconductor manufacturing industry is one of the fastest
evolving industries in the world. As feature sizes shrink and wafer
sizes increase, sophisticated control methods are needed to im-
prove the product yield, throughput, and overall equipment
effectiveness.

The run-to-run (RtR) controller is a model-based process con-
trol system that integrates concepts in statistical process control
(SPC) and engineering process control (EPC). It is achieved by
adjusting process inputs (recipes) at the beginning of each run
based on the information obtained from previous runs. In the last
decade, RtR control has been extensively deployed in the semicon-
ductor industry. Research and development in this area have been
summarized by many authors in books and review articles
[2,3,6,11,15].

Most RtR control algorithms are based on the assumption that
there is only a single product fabricated in the manufacturing line
[1,4,17]. This is, however, far from reality. In the semiconductor
manufacturing industry, production resembles an automated

assembly line in which many similar products with different spec-
ifications are manufactured step-by-step, with each step being a
complicated physiochemical batch process carried out by a num-
ber of tools. A specific combination of product and tool is known
as a ‘‘thread” [7,18]. Single product RtR control algorithms can be
applied to a thread. However, the number of threads can be very
large, up to thousands in a foundry fab. It is cumbersome to main-
tain so many controllers. Moreover, the controller performance
will be degraded for those infrequent threads since condition of
the tool may be quite different from the last run of the same
thread. Zheng et al. [22] showed that even if the actual root cause
is the change in condition of the tool, a single tool-based EWMA
(exponentially-weighted moving average) controller is unstable if
the model uncertainties of different products are different. Pasadyn
and Edgar [13] and Firth et al. [7] proposed to estimate contribu-
tions to biases states of each tool and product individually using
previous runs and recombined them to determine recipe adjust-
ments of future runs. However, in each production run, one prod-
uct is manufactured on one tool. It can be shown that absolute
individual states of products and tools are not observable. Pasadyn
and Edgar [13] include the qualifying wafers and assumed that the
performance of qualifying wafer is equivalent to tool performance.
However, there is always the dilemma of reduced throughout
capacity if there are frequent runs of non-product test wafers
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and reduced sensitivity of the identification algorithm if only a few
qualifying wafers are used. Firth et al. [7] proposed a least square
method known as just-in-time adaptive disturbance estimation
(JADE) which includes additional constraints that the product
and tool states remained unchanged from run-to-run and a pro-
prietary weighting method. Wang et al. [21] gave a detailed discus-
sion about the observability of non-threaded state estimation
problem in high-mix production and showed unbiased observa-
tions of the overall state can be obtained.

In statistics, the problem of identification of different bias fac-
tors has been described as the analysis of variance (ANOVA) [12].
ANOVA has also been applied to semiconductor industries in many
different areas such as control chart build-up [16] and feedback
variable selections [14]. Vanli et al. [19] examined the problem of
model selections in state identification of mixed run plant. The
model structure involves an ANOVA model of main and interaction
effects and auto-regressive dynamic terms that are specific to each
thread. Again the emphasis is on the correct tracking of individual
overall states for run-to-run control purposes. In this work, a novel
state estimation method based on ANOVA is developed to estimate
the difference of each product from the average of all products and
difference of each tool to the average of all tools in the fab. It is
shown that the relative states of each tool and product can be
determined by introducing the ANOVA constraints after sufficient
data were amassed. This method is formulated in a form of recur-
sive state estimation using Kalman filter. The advantages of the
proposed method are demonstrated using simulations to show
that the correct ANOVA states can be estimated in production sce-
narios such as tool/product-shift, tool-drift, product ramp-up, tool/
product-offline and preventive maintenance. Furthermore, appli-
cation of this state estimation method in a deadbeat RtR control
scheme shows that substantial improvements in process capability
can be gained for specialized small lot counts products. Application
to an industrial example will also be presented.

2. State estimation based on ANOVA

2.1. Linear plant with tool and product biases

Consider a multi-tool (n = 1, . . . ,N) multi-product (m = 1, . . . ,M)
operation. Let us assume that the output of the kth run, which pro-
duces a product nk on the tool mk, is equal to

yk ¼ buk þ atool
nk
þ aprod

mk
þ ek: ð1Þ

Here, b is the process gain which relate the change in manipulating
variable uk to the change in output quality variable yk; and atool

nk
and

aprod
mk

are two disturbance parameters associated with biases of the
specific tool and product respectively. fekg is assumed to be a white
noise process (i.e., E½ek� ¼ 0; Var½ek� ¼ r2; Cov½ek; ekþj� ¼ 0 for j – 0).
For simplicity, let us assume that b is a known constant. In the
above model, it is assumed that there exist no interactions between
tools atool

n ðn ¼ 1;2; . . . ;NÞ and parts aprod
m ðm ¼ 1;2; . . . ;MÞ. Given a

set of historical production records, (yk;uk;nk;mk; k ¼ 1; . . . ;K) we
can define an observed bias vector as

Ŷ ¼
y1 � bu1

..

.

yk � buk

2
664

3
775¼ Ca¼

d1;n1 . . . dN;n1 ;d1;m1 . . .dM;m1

..

.

d1;nK . . . dN;nK ;d1;mK . . .dM;mK

2
664

3
775

atool
1

..

.

atool
N

aprod
1

..

.

aprod
M

2
66666666664

3
77777777775
;

ð2Þ
where C is an incidence matrix in which dn;nk

; dm:mk
are Kronecker

deltas, equal to 1 when n and m are equal to the tool nk and product
mk of record k. Since each record contains one product being pro-
duced on one tool, we have

Xn

j¼1

Cij ¼ 1
XNþM

j¼Nþ1

Cij ¼ 1: ð3Þ

The column rank of C is N + M � 1. Hence the N + M absolute states
of individual tool and parts cannot be estimated in an unbiased
manner. If the Moore–Penrose pseudo-inverse of C is used:

~a ¼ C�1Ŷ: ð4Þ
The value of ~a obtained corresponds to a least square fit estimate
that would be biased. Firth et al. [7] suggested that given a set of
past estimates of ~at�1

Ŷ
~at�1

" #
¼ C1 ~at ¼

C
I

� �
~at: ð5Þ

A new estimate of ~at is obtained by a weighted least square
solution:

~at ¼ ðCT
1WC1Þ�1CT

1WŶ; ð6Þ

where W is the weighting matrix.

Nomenclature

a absolute states vector
atool

n absolute states for tools

aprod
m absolute states for products

b process gain
C incidence matrix
d number of products which are offline
I identity matrix
k time
N number of tools
M number of products
O observation matrix
pm ANOVA states of products
P covariance matrix of the ANOVA states
Q covariance matrix of the process noise
R covariance matrix of the measurement noise
T transition matrix
u manipulating variable
v prediction error

W weighting matrix
y output quality variable
~y estimated thread
ŷ observed thread
Y process bias vector
Z measurement matrix

Greek letters
a ANOVA states vector
d Kronecker delta
e white noise
g IMA (1,1) time series
l grand average of ANOVA states
r variance
s ANOVA states of tools
t measurement noise
x process noise
U variance of prediction error
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2.2. Analysis of variance (ANOVA)

According to ANOVA, the effects of different factors are ex-
pressed as:

yk � buk ¼ lþ snk
þ pmk

þ ek; ð7Þ

where l is the overall mean of all observed tool and product com-
binations, sn (n = 1, . . . ,N) represent the difference between the
average results of all possible products on nth tool and the overall
mean, and pm (m = 1, . . . ,M) represent the difference between the
average results on all possible tools of the mth product and the
overall mean. Unlike atool

n and aprod
m , which are absolute states of

the particular tool and product, sm and pm are relative contributions
subject to the constraints [12]

XN

n¼1

sn ¼ 0
XM

m¼1

pm ¼ 0: ð8Þ

Here, it is also assumed that there exist no interactions between
tools sn (n = 1, 2, . . . ,N) and parts pm (m = 1, 2, . . .,M). In real practice,
it should be noted that the output y is not only a function of present
tool and product, but may also be influenced by other factors such
as the specific tool used in the previous step. However, to include
these factors is only a simple extension of this work. The matrix
form of Eq. (7) is

Ŷ ¼ Za ¼

1 d1;n1 . . . dN;n1 d1;m1 . . . dM;m1

..

.

1 d1;nK . . . dN;nK d1;mK . . . dM;mK

2
664

3
775

l
s1

..

.

sN

p1

..

.

pM

2
66666666666664

3
77777777777775
: ð9Þ

For the new incidence matrix Z, there are N + M + 1 columns, but
since

XNþ1

j¼2

Zij ¼ 1
XNþMþ1

j¼Nþ2

Zij ¼ 1 ð10Þ

the actual column rank is N + M � 1, i.e. it is rank deficient by 2.
However, given the two ANOVA constraints (8) we have

Ŷ0 ¼
Ŷ
0
0

2
64

3
75 ¼ Z0a ¼

Z
0 1 . . . 1|fflfflffl{zfflfflffl}

N

0 . . . 0|fflfflffl{zfflfflffl}
M

0 0 . . . 0|fflfflffl{zfflfflffl}
N

1 . . . 1|fflfflffl{zfflfflffl}
M

2
66664

3
77775a ð11Þ

which means that the equality constraints (8) should be satisfied
when ANOVA states are updated each time. It should be pointed
out that although the number of possible threads is NM, the possi-
ble number of different rows is greater than the number of indepen-
dent columns. However, the actual number of threads is usually
much less because some products with small lot counts may not
be spread to all tools. There should be more than N + M � 1 threads
to make Z0 full rank so that an unbiased estimate of a can be ob-
tained. Furthermore, in some fabs, certain tools may be dedicated
to produce certain products and vice versa. We must ensure that
such groupings are treated as a separate system.

2.3. ANOVA state space model

If we assume that the ANOVA states are stationary over several
periods of time, then ANOVA model of the multi-tool and multi-
product plant can be expressed in the following state space form:

atþ1 ¼ Tat þ xt; ð12Þ
Ŷ0t ¼ Z0at þ mt ; ð13Þ

where xt and tt are independent, zero-mean, Gaussian noise pro-
cesses of covariance matrices Q and R, respectively. T is the transi-
tion matrix

T ¼
1 01�N 01�M

0N�1 1N�N 0N�M

0M�1 0M�N 1M�M

2
64

3
75: ð14Þ

The observability matrix for the above ANOVA state space model is

O ¼ ðZ0;Z0T � � �Z0TNþMÞT: ð15Þ

The system is observable if the observability matrix is full rank. In
this case, the transition matrix T is an identity matrix, the observ-
ability matrix O is equal to the output matrix Z0 which is of full rank
N + M + 1.

2.4. Recursive estimation

Estimation can then be carried out in a recursive manner from
interval to interval. At the start of any time interval t, given an esti-
mated ANOVA state vector ~at�1 and a estimated covariance matrix
of the ANOVA states ~Pt�1, then the predicted values of the ANOVA
state vector ~atjt�1 and predicted the covariance matrix for this per-
iod ~Ptjt�1 are given by

~atjt�1 ¼ T~at�1; ð16Þ

~Ptjt�1 ¼ T~Pt�1TT þ Q : ð17Þ

After the operating records ðyt;k;ut;k;nt;k;mt;kÞ; k ¼ 1 . . . Kt of this
period are collected, the minimum mean square estimator of the
ANOVA states and the covariance matrix can be updated by the fol-
lowing equations (e.g., [5]):

ât ¼ ~atjt�1 þ ~Ptjt�1Z0Tt U�1
t ð~Y0t—Z0t � ~atjt�1Þ; ð18Þ

~Pt ¼ ~Ptjt�1 � ~Ptjt�1Z0Tt U�1
t Z0t ~Ptjt�1; ð19Þ

Ut ¼ R þ Z0tPtjt�1Z0Tt : ð20Þ

In these circumstances a set of prediction error or ‘innovations’

mt ¼ Ŷ0t—Z0t~atjt�1 ð21Þ

are produced by the Kalman filter. These are independently and
normally distributed with mean zeros and variance r2Ut if the pro-
cess follows (12) and (13).

It is not possible to guarantee that Z0t contains all the threads
and of full rank N + M + 1 during the data collection interval. For
example, in the extreme case, the model can be updated whenever
the result of a single run is reported. However, it is important to
ensure that Z0 over an extended history is of full rank N + M + 1.
This assumption may be invalid if some products are terminated
or a certain tool is offline for an extended period of time. The assur-
ance of the above full rank assumption can be achieved by moni-
toring the condition number of the matrix ~Pt .

2.5. Run-to-run control

The control objective is to maintain the process output as close
to target as possible. Given a set of predicted states ~atjt�1, the dead-
beat control action in the period t, before new data arrive are given
by:

ut;k ¼
Tk � ~lt � ~st;nk

� ~Pt;mk

b
: ð22Þ

M.-D. Ma et al. / Journal of Process Control 19 (2009) 591–603 593



Author's personal copy

0 50 100 150 200
10

14

18

y 1A
0 50 100 150 200

14

18

22

y 1B

0 50 100 150 200
21

25

29

y 1C

0 50 100 150 200
10

14

18

y 2A

0 50 100 150 200
13

17

21

Run

y 2B

0 50 100 150 200
20

24

28

Run
y 2C

0 50 100 150 200
16

18

20

22

0 50 100 150 200
-2

-1

0

1

2

3
1

0 50 100 150 200
-3

-2

-1

0

1

2

2

0 50 100 150 200
-7

-6

-5

-4

-3

p A

0 50 100 150 200
-3

-2

-1

0

1

p B

Run
0 50 100 150 200

4

5

6

7

8

Run

p C

0 50 100 150 200
0

10

20

30

0 50 100 150 200
0

10

20

30

0 50 100 150 200
0

5

10

15

20

0 50 100 150 200
5

10

15

20

25

0 50 100 150 200
10

15

20

25

30

Run

 

 

+ 1
atool

1

+ 2

atool
2

+pA

aprod
A

+pB

aprod
B

aprod
C

+pC

μ
τ

τ

μ

μ

μ

μ

μ

μ

μμ

μμ
τ

τ
τ

τ

μ
τ

τ

Fig. 1. Changes in actual and estimated (a) states of thread, (b) ANOVA parameters and (c) absolute and relative factor biases in a tool shift. (— actual values, --- estimated
values, � observed values).
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3. Results and discussion

3.1. Simulation example

In this section, a series of simulation tests are designed to inves-
tigate the effectiveness of the proposed algorithm in various oper-
ation scenarios. A simple two-tool (1, 2) and three-product (A, B, C)
example is used in the following simulation studies. Each tool and
product is assigned a unique bias. Therefore, there are six ANOVA
states in the model. The initial states of the ANOVA states are as-
sumed to be on target before the start of the simulations in differ-
ent operation scenarios. The tool and product adopted for each run
is randomly selected based on a given probability of occurrence.
The probability distributions of two tools are 0.6 and 0.4, respec-
tively. The probability distributions of product A, B, and C for the
examples of Sections 3.2–3.5 are 0.4, 0.3 and 0.3, respectively.

In these simulations, the state noise and measurement noise are
white noise with standard deviation 0.1. The adjustable parame-
ters of the observer Q and R can be obtained by offline analysis

in real applications. They could be different at different production
stages. However, they remained the same in the simulation exam-
ples below. It is also assumed that there is no metrology delay and
the states are updated whenever the measurement arrives.

For each operation scenarios, three different comparisons were
made. First estimated ANOVA states ~a are compared with the ac-
tual ANOVA states a. The estimated thread states ~ymn;k and ob-
served performance of all the threads ŷk are also compared. The
actual biases of each tool atool

n and products aprod
m are compared with

l + sn, the average performance of all products on the nth tool, and
l + pm, the average performance of the mth products on all tools.
Note that it is easy to identify the changes of tools or products
using the ANOVA estimator proposed in this paper. If the ANOVA
states of the tools or products remain stable, the corresponding
conditions of the tools or products are confirmed to be unchanged.
In case of a change of the ANOVA state are observed, the change of
~lþ ~sn or ~lþ ~pm confirms the change of the tool n or the product m.
Furthermore, the changes of ~lþ ~sn or ~lþ ~pm are consistent with
the actual states atool

n and aprod
m .
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Fig. 2. Changes in actual and estimated (a) states of thread and (b) absolute factor biases using JADE in a tool shift. (— actual values, -- - estimated values, � observed values).
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3.2. Tool shift

There are many events which can result in an apparent imme-
diate shift in the operating conditions. For instance, such a distur-
bance might occur when a tool undergoes a maintenance event
(e.g. [8] reported sudden change in trench depth after a wet clean
operation). This event would be seen by the process as a step dis-
turbance in the output variable. The disturbance is often not mea-
surable. Therefore, the controller should learn from the process
output and compensate for the effect of the disturbance.

The comparisons of actual and estimated ANOVA states, the ac-
tual and estimated states of each thread, and actual biases and rel-
ative bias of the each tool and products are shown in Fig. 1. In this
case, there is an abrupt change for the bias value of tool 1 at the
100th run. In Fig. 1a, we observed that all the threads on tool 1
experience an abrupt change while the states of all the threads
associated with tool 2 remain unchanged. In Fig. 1b, we found that
the ANOVA states ~l and ~s1 experience positive shifts while the AN-
OVA tool state ~s2 experience a shift in the other direction. In Fig. 1c,
it is found that the average performance of all products on tool 1

~lþ ~s1 experienced a shift; the average performance ~lþ ~s2 of
all products on tool 2 remained unchanged while the average
performance ~lþ ~pA;B;C of all products on tool 2 experienced a shift
too.

Fig. 2 illustrated the results of JADE estimates. In the simulation,
an identity weighting matrix is used for comparison with ANOVA
estimates. It is interesting to note that when a shift is induced to
tool 1, shifts are also observed to other factors as shown in
Fig. 2b. The biases obtained are not true estimates of these factors.
However, the estimated states of all the threads are correct as
shown in Fig. 2a since the method is a least square fit of all the
threads. Hence, use of the recombined thread states for controlling
existing threads is not a problem. Application of these individual
factor states to estimate new thread may lead to errors.

3.3. Tool drift and PM

If a manufacturing process is known to drift due to equipment
aging, then a deterministic drift exists in the system. Aging
can be found in wafer etching process and chemical mechanical
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Fig. 4. Changes in actual and estimated (a) states of thread, (b) ANOVA parameters with product ramp-up (— actual values, --- estimated values, � observed values).
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polishing [1,4,8]. A drift persisted for a long period would normally
be followed by a maintenance event and corresponding process re-
set, resulting a saw-tooth pattern in an uncontrolled quality
characteristic.

The simulation results are shown in Fig. 3. The two tools expe-
rienced deterministic drifts of slopes 0.1 and 0.2, respectively. Tool
1 was reset at the 115th run and tool 2 was reset at the 200th run.
As shown in Fig. 3a and b, the states of each thread and the ANOVA
states of each tool and product can be estimated correctly through-
out the simulation. Furthermore, the ANOVA states of the products
remained unchanged. Fig. 3c illustrated that the average perfor-
mances ~lþ ~s1;2 of tool 1 and tool 2 show patterns that are consis-
tent with the actual states. The average performances ~lþ ~pA;B;C of
the products A–C show saw-tooth patterns that are consistent with
the changes in average performance of the whole plant. Since there
are no changes in the relative performance of different product, the
ANOVA product states ~pA;B;C remained unchanged as shown in
Fig. 3b.

3.4. Product ramp-up

In a foundry, commissioning of new products is a regular activ-
ity. Before a new product is produced in large quantities, it is usu-
ally test tried in small quantities on a limited number of tools. If
they are deemed satisfactory, large orders will be placed and the
product will spread to other tools. Optimum recipes on different
tools are expected in a short period. This phenomenon is called
ramp-up in the semiconductor industry.

Simulation results for this case are shown in Fig. 4. In the first
100 runs, product C, namely the new product, was produced on
tool 2 in small quantity. In the second 100 runs, the product C
did not appear and it was produced in large quantity in the third
100 runs. It is assumed that no information about the ANOVA state
of the new product is available before it is produced. The initial AN-
OVA state of product C is set to be zero ~pc ¼ 0. Once the new prod-
uct is produced, a value of ~pC is estimated. It should be noted that
values of ~pA and ~pB and ~l also change as product C is introduced to
the system (Fig. 4a). The correct thread performances of C on both
tool 1 and tool 2 can be estimated as soon as the production of C
ramped up (Fig. 4b).

3.5. Product offline

In a semiconductor foundry, as many new products may be
commissioned, many old products may be terminated from pro-
duction. When a product is stopped being produced and the corre-
sponding state remains in the system, the system will be
unobservable. At this time, the ANOVA states will be biased when
a disturbance happens.

Simulations of such an operation scenario are presented in
Fig. 5. The production of C is terminated at the 50th run. Although
the estimates of thread performances are correct (Fig. 5a), esti-
mates of the ANOVA parameters pA, pB, and pC become biased if
large changes occur, e.g. at 100th run, a tool shift is found in tool
1 (Fig. 5b).

It should be noted that there may be hundreds of products in a
fab and the operator probably does not know whether certain
product has been offline for a long time so that the ANOVA states
estimates may become biased. This can be done by monitoring
the changes in condition number of the matrix ~Pt over time. As
shown in Fig. 6, the condition number of the matrix ~Pt increases
rapidly when the product C is offline.

It is therefore desirable to remove products that will be perma-
nently offline from the list. To do so, a set of new ANOVA parame-
ters need to be estimated. This can be done by equating threads
estimated by the new ANOVA parameters to the product effects
estimated by the existing ANOVA parameters. The procedure is
shown for the example in which the product C is removed from
a 2-tool-3-product system to give the ANOVA parameters of a
2-tool-2-product system:

1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
0 1 1 0 0
0 0 0 1 1

2
666666664

3
777777775

l0

s01
s02
p0A
p0B

2
666666664

3
777777775
¼

~lþ ~s1 þ ~pA

~lþ ~s1 þ ~pB

~lþ ~s2 þ ~pA

~lþ ~s2 þ ~pB

0
0

2
666666664

3
777777775
; ð23Þ

where ½l0 s01 s02 p0A p0B�
T is the new ANOVA state vector with product

C removed and ½~l ~s1 ~s2 ~pA ~pB ~pC �T is the current state vector. Fig. 5b
show that unbiased estimations of the new ANOVA states can be
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Fig. 6. Changes in condition number of matrix ½~Pt � when a product is offline.
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found if product C is removed from the list at the 150th run. As soon
as the product is removed, the condition number of the matrix ~Pt

becomes normal again.

3.6. Controller performance

In a highly-mixed foundry, some products are fabricated infre-
quently in small quantities. However, it should be noted that prod-
ucts which are produced with large quantity are usually of
marginal profits and the products which are produced infrequently
are often high-value added and contribute a substantial portion of

the profit. Therefore, it is highly desirable for a control algorithm to
have comparable performance for products with different run
counts.

In this section, the performance for ‘‘infrequent” products for
the three control algorithm, threaded EWMA algorithm with
(k = 0.2), JADE and the ANOVA method proposed in this paper are
investigated. A two-tool-three-product simulation example is
used. Runs are evenly distributed between the two tools, and the
probability distributions of products A, B, C are 60%, 35% and 5%,
respectively. The fluctuations in conditions of the two tools are as-
sumed to be two constant biases plus integrated moving average
(IMA) stochastic time series:

atool
i;nk
¼ cnk

þ gi;nk
;

gi;nk
¼ gi�1;nk

þ ei;nk
� hnk

ei�1;nk
; ð24Þ

where i is an index of the number of runs on the tool nk. cnk
is con-

stant. gi;nk
is an IMA(1,1) disturbance which represents the dynamic

behavior of the tool. en�Nð0;r2Þ is Gaussian distributed random
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Fig. 7. Changes output and manipulated variables of a mixed run plant (a) output and (b) input.

Table 1
Comparison of RtR control performances for different products

Method MSEA MSEB MSEC MSE

ANOVA 0.2400 0.2833 0.4124 0.2642
JADE 0.2557 0.3182 0.5423 0.2964
Threaded EWMA 0.2746 0.4103 2.2348 0.4152
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noise with zero mean and variance r2 = 0.16. hnk
are assumed to be

0.4 for both tools. If h = 1 the disturbance is white noise, if h = zero,
the disturbance is a random walk. The mean squared errors (MSE)
for different products are used as the performance index:

MSEm ¼
P

kdm;mk
ðTk � ykÞ

2P
kdm;mk

: ð25Þ

The simulation results are shown in Table 1. For all three control
algorithms, it can be found that Product A, which is the most fre-
quent produced product, had the best performance, while Product
C, which is the produced in small quantities, had the worst perfor-
mance. It is not surprising that the performance of threaded EWMA
for product C is poor because it is produced only occasionally and
the condition of the tool may be quite different from the last run
it is produced. The performance of threaded EWMA for products A
and B are acceptable due to their higher running frequencies. The
performance of JADE for all three products is acceptable. The ANO-
VA result is the best among the three methods for all three products

with different run counts. This makes the proposed method an
appropriate candidate for high-mix production.

4. Industrial example

Test results of application of the method outlined in the previ-
ous sections of this paper to an industrial shallow trench isolation
(STI) process is presented here. The STI is used to prevent electrical
current leakage between adjacent semiconductor device compo-
nents. One of the key steps in STI is the use of a reactor ion etch
process to etch the trench. The resulting trench depth variation
due to seasoning of the etch chamber; and use of etching time as
the manipulated variable in run-to-run control to control the
trench depth have been reported by several authors (e.g.
[8,9,10,20]. However, the effects of different chambers on different
products are not the same. Hence, an ANOVA based controller was
used to estimate the etch time required for different products on
different chambers.
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The example includes 3393 runs during a time period of 76
days. There were four tools (etch chambers), 35 products and
134 threads (combination of etch-chamber and products). The data
was standardized to have overall mean zero and overall variance 1.
The controlled output (trench depth) and manipulated input (etch
time) are plotted in Fig. 7. It is found that the run-to-run correla-
tions of controlled output is very small (Fig. 7a) because such
run-to-run variations are eliminated by more systematic variations
in the manipulated input (Fig. 7b). A simulation is carried out to
evaluate the performance of the plant under threaded EWMA con-
trol. It was found that the optimal output is achieved at k = 0.2. The
overall standard deviation of the plant is 1.19 which is about 19%
higher than the ANOVA control.

Fig. 8 shows the standard deviations and means of each of the
35 products obtained using EWMA simulation and plant results
using ANOVA. Each product is labeled by its run counts during this
period. It is found that the standard deviations (Fig. 8a) of and the
mean offset (Fig. 8b) of different products are generally higher for
threaded EWMA control, especially so for products with low run
counts. This shows that control actions based on estimated ANOVA
states is an effective framework for RtR implementation in a high-
mixed production.

It is also of interest to study the behaviors of tools. The variation
of corresponding four ANOVA tool states are shown in Fig. 9. There
was a maintenance event around the 40th day which caused a shift
for the four tool states. The state values were closed to each other
after maintenance, indicating that the chambers conditions are rel-
atively the close. However, Tool 2 began to deteriorate and differs
substantially from other tools. A maintenance procedure was exe-
cuted at the 63rd day. The performance of the tools become close
to each other again. This shows that the state estimation method
is very valuable in monitoring the health of individual tools and
as well relative differences among similar tools.

5. Conclusion

In this paper a novel state estimation method based on statistics
method ANOVA is developed to estimate the relative states of each
product and the relative states of each tool to the grand average of
this station in the fab. The method is formulated in a form of recur-
sive state estimation using Kalman filter. Simulation results show

that the correct ANOVA states can be estimated in production sce-
narios such as tool-shift, tool-drift, product ramp-up and offline, or
other non-stationary stochastic disturbances. Furthermore, appli-
cation of this state estimation method in a RtR control of trench
depth by etch time shows that substantial improvement of quality
of products with small run counts. This makes the proposed meth-
od highly suitable for mixed product control system.
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