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a b s t r a c t

A novel run-to-run control algorithm based on a dynamic analysis of variance (ANOVA) approach is pro-
posed to deal with run-to-run (RtR) control of a high mixed operation, i.e., many different products are
manufactured in many different tools. The conditions of different tools and products are identified based
on the ANOVA analysis of the system output. A dynamic term in the form of an autoregressive integrated
moving average (ARIMA) disturbance model is included in the process model to characterize the run-to-
run disturbances such as drift, shift and/or some other unknown disturbances of different tools. It is
shown from the study below that controller performance can be improved by introduction of the
dynamic term, especially for products which are produced only occasionally. This makes it highly suitable
for mixed product control system. An industrial example is also included to demonstrate superiority of
this approach.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Run-to-run (RtR) control has been identified as a key enabling
technology of maintaining quality in semiconductor manufactur-
ing. Active researches in this area have been summarized by many
authors in books and review articles [1–3]. Most RtR control algo-
rithms are based on the assumption that there is only a single
product fabricated in the manufacturing line. However, an actual
semiconductor manufacturing facility is an assembly line consist-
ing of a sequence of operations performed by parallel machines
that manufacture products of many different grades. The most
common practice is to classify the situation of a specific tool used
and a specific product manufactured as a ‘‘thread”, and creates a
RtR controller for each thread. Typically there will be thousands
of threads for each operation. Several papers [4–6] have discussed
the possibility of cross utilization of information of different
threads to isolate changes of condition of tool and products. Zheng
et al. [7] considered the stability of a single tool with different
products. They demonstrated that exponentially weighted moving
average (EWMA) control of the tool disturbance may not be stable
if the effect of the tool is not stationary and the error of process
gain estimates of different products are different.

Pasadyn and Edgar [5] noted that the absolute value of the
product and tool disturbances cannot be estimated independently

even if they are constant because each run must consist of a spe-
cific product manufactured on a specific tool. They proposed to
use of monitoring wafers to condition of the tool. Firth et al. [6]
proposed a method assuming that the tool noise and product noise
are stationary. The resulting tool and product estimates may be
biased, i.e. changes in condition of one tool may lead to changes
in estimates of disturbance estimates of other tools and products.
However, the estimates of different threads remained unbiased.
Thus the model can be used for control but not fault detection
and diagnosis. Bode et al. [8] recognized that specific regression
techniques must be used to obtain unbiased estimates of tool
and product states.

Analysis of variance (ANOVA) is a standard statistical tool in the
area of linear modeling of multi-factor systems [9]. In [10], we have
proposed a state estimation method of a mixed run plant based on
analysis of variance. However, the method also assumed that the
states of the tools are unchanged and a recursive Karman filter esti-
mator is used. In this work, we shall relinquish the assumption that
the condition of tool is unchanged and demonstrate that improved
controller performance and diagnosis of tool conditions can be
obtained.

2. Theoretical development

2.1. Plant

Fig. 1 shows the schematic plots of a ‘‘mixed run” manufactur-
ing system. A number of products are manufactured on a number
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of tools. In each run, most operation variables follow a basic recipe
for each product. After each run, an output y related to the quality
of the product is measured. In run-to-run control, certain manipu-
lated variable in the recipe will be adjusted based on measurement
of output variables y of previous runs. Consider a simplified multi-
tool and multi-product production system with a single (quality)
output and a single (manipulated variable) input. A sequence of
production data can be expressed as follows:

yðnÞ ¼ f xðnÞ; cT
iðnÞðnÞ; cP

jðnÞðnÞ; cTP
iðnÞ;jðnÞðnÞ

� � iðnÞ ¼ 1; . . . ; I

jðnÞ ¼ 1; . . . ; J

n ¼ 1; . . . ;N

8><
>: ð1Þ

In Eq. (1), yn and xn denote the output and input of the nth run. f is a
nonlinear function of plant behavior at the nth run which depends
on the tool characteristics cT

iðnÞðnÞ of the specific tool i(n) used, the
product characteristics cP

jðnÞðnÞ of the specific product j(n) being
manufactured, as well as the interaction characteristics cTP

iðnÞ;jðnÞðnÞ
of the specific pair tool i(n) and product j(n). In this work, it is as-
sumed that there exist no interactions between tools and products,
and the plant is operated in a very narrow range and hence a linear
system can represent the plant behavior. Therefore, Eq. (1) can be
simplified as

yðnÞ ¼ bxðnÞ þ cT
iðnÞðnÞ þ cP

jðnÞðnÞ þ eðnÞ ð2Þ

where e(n) 2 N(0, r2) being a zero mean white noise with variance
r2, b is the process gain the dependency of y and x. However, the
absolute value of tool and product characteristics can not be esti-
mated independently because each run consists of a specific prod-
uct manufactured on a specific tool.

2.2. Thread EWMA algorithm

Threaded EWMA controller is widely used for mixed run pro-
duction. Consider a simple linear process performed in a mixed
run situation on a single tool

yðnÞ ¼ ajðnÞ þ bxðnÞ þ DðnÞ; jðnÞ ¼ 1; . . . ; J; n ¼ 1; . . . ;N ð3Þ

where y(n) and x(n) denote values of output and manipulated var-
iable used on the nth run on the tool. aj(n) is offset or bias term,
and b is the static gain term associated with the product produced
on the nth run on the tool. Let us assume that they are relatively
independent of time. D(n) is a stochastic noise process associated
with the tool. In a threaded approach, a sequence of output and in-
put for each specific product is re-sampled:

yðnjÞ ¼ aj þ bxðnjÞ þ DjðnjÞ ð4Þ

where nj is an index of the number of runs making the jth product
that have been carried out. Given a process model y = bx + aj for
each product, the offset term can be estimated by an EWMA filter

ajðnjÞ ¼ kðyðnjÞ � bxðnjÞÞ þ ð1� kÞajðnj � 1Þ ð5Þ

The control action is

xðnj þ 1Þ ¼ �ajðnjÞ
b

ð6Þ

Here the quality target is assumed to be zero without loss of gener-
ality. Note that the threaded EWMA control is similar to a single
product EWMA control, except the disturbance experienced is not
the actual change in tool condition D(n) from run to run, but a re-
sampled series Dj(nj).

2.3. ANOVA model with ARIMA disturbance

To identify the disturbance states of the individual tools and
product, the concept of ANOVA is introduced here. It is assumed
that disturbance attributed to product j(n) is a constant. Further-
more, in addition to having a constant offset, we assume that the
condition of the tool changes from run to run. Therefore, if we sort
the above data into I sequences according to the specific tool used,
the production on the ith tool can be expressed as

yðkiÞ ¼ bxðkiÞ þ lþ si þ pjðkiÞ þ giðkiÞ ki ¼ 1 � � �Ki ð7Þ

In the above equation ki is an index sequence that represents the or-
der of runs that have been performed on the tool i. l is the overall
mean of all observed tool and product combinations. si and pj are
averaged difference attributed to tool i and product j. They must
satisfy the ANOVA constraints

XI

i¼1

si ¼ 0
XJ

i¼1

pj ¼ 0 ð8Þ

gi(ki) is a discrete-sampled stochastic dynamic disturbance attrib-
uted to tool i. The model is similar to the static ANOVA model pro-
posed by Ma et al. [10], except for the additional run-to-run
correlated stochastic term gi(ki). In general, gi(ki) can be repre-
sented by an ARIMA(p,d,q) process:

UiðBÞgiðkiÞ � ð1þ /i1Bþ � � � þ /ipBpÞð1� BÞdgiðkiÞ
¼ ð1þ hi1Bþ � � � þ hiqBqÞeiðkiÞ � HiðBÞeiðkiÞ ð9Þ

where B is the back shift operator, eiðkiÞ 2 Nð0;r2
i Þ being a zero

mean white noise with variance r2
i . 1, ui1 uip and hi1 � � �hiq are the

coefficients of the polynomial Ui(B) and Hi(B) .

2.4. Identification and run-to-run control based on the proposed model

Given a window of past operating data y(k1), x(k1), k1 = 1 � � �
K1, . . .,y(kI), x(kI), kI = 1 � � �KI, by assume that ei(0) = 0, we have

êiðkiÞ ¼ yðkiÞ � b̂xðkiÞ � l̂� ŝi � p̂jðkiÞ

� 1þ ĥi1Bþ � � � þ ĥiqBq

1þ /̂i1Bþ � � � þ /̂ipBp
� �

ð1� BÞd
êiðki � 1Þ ð10Þ

the states of the tools and products can be estimated by minimizing
the objective function

min
b̂;l̂;ŝi ;p̂j ;/̂i1 ���/̂ip ;ĥi1 ���ĥiq

¼
PI

i¼1

PKi

ki¼1
êiðkiÞ½ �2

s:t:
PI

i¼1
si ¼ 0

PJ

i¼1
pj ¼ 0

ð11Þ
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Fig. 1. Mixed product manufacturing system.
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The above optimization can be solved using standard optimization
techniques such as fminsearch in MATLAB.The results of the obser-
vation window are applied to determine the control action in a con-
trol horizon hi = 1 � � �Hi using the dead-beat control law:

xiðhiÞ ¼
�l̂� ŝi � p̂jðhiÞ � ĝiðhi hi � 1j jÞ

b̂
ð12Þ

where ĝiðhijhi � 1Þ is the one-step-ahead forecast of ĝiðhi � 1Þ. The
estimated random input noise and the tool disturbance are updated
when the measurement arrives

êiðhiÞ ¼ yðhiÞ � b̂xðhiÞ � l̂� ŝi � p̂jðhiÞ � ĝiðhijhi � 1Þ ð13Þ

ĝiðhiÞ ¼
1þ ĥi1Bþ � � � þ ĥiqBq
� �

1þ /̂i1Bþ � � � þ /̂ipBp
� �

ð1� BÞd
êiðhiÞ ð14Þ

If the back shift operator shifts the error estimates beyond the start
of the control horizon, the error estimates of the observation win-
dow will be used.

2.5. Estimation of missing product disturbance

It is possible that in the control horizon, products not found in
the previous observation window are encountered. This product
term p̂jðhiÞare estimated by one of the following methods:

(i) If the product 1 has appeared in one of the past windows H0,
but not the immediate previous window H, then find a prod-
uct p2 that appear in both windows, then

p̂H
1 ¼ p̂H

2 þ p̂H0
1 � p̂H0

2 ð15Þ

(ii) If product 1 has never appeared, the operator will determine
which product in the current window is most similar to the
unknown product and employ its product disturbance term.

2.6. Step disturbance (shift) compensation

For many semiconductor processes, preventive maintenance
(PM) is often implemented due to degradation. This causes an
abrupt change of tool conditions which can be seen as a shift or
step disturbance in addition to the ARIMA(p,d,q) model. Step dis-
turbance may be identified as ‘‘intervention event” [11]. The mag-
nitude of the step disturbance can be estimated by maximum
likelihood method. Consider a new tool disturbance

NiðkiÞ ¼ xinðkiÞ þ giðkiÞ ð16Þ

which includes an ARIMA noise UiðBÞgiðkiÞ ¼ HiðBÞeiðkiÞ and an
intervention event which is a step disturbance at time T:

nðkiÞ ¼
0 ki < T

1 ki P T

�
ð17Þ

The maximum likelihood estimator of xi is [11]

x̂i ¼
PN

ki¼1zki
wkiPN

ki¼1z2
ki

ð18Þ

with zki
¼ pðBÞnðkiÞ, wki

¼ pðBÞNðkiÞ, and p(B) = (H(B))�1U(B).
When the original tool noise gi follows the IMA(1,1) model,
p(B) = (1 � hB)�1(1 � B). The maximum likelihood estimator of xi

becomes

x̂i ¼
PN

ki¼1zki
wkiPN

ki¼1z2
ki

’ ð1� hÞ
X1
s¼0

hsNTþ1þs �
X1
s¼0

hsNT�s

 !
ð19Þ

In actual implementation, whenever there is a large spike at time T
in error reported in the control horizon, NiðkiÞ ¼ yðkiÞ � bxðkiÞ
�l̂� ŝi � p̂jðkiÞ, the observed model errors in the control horizon,
are used with intervention analysis, Eqs. (16)–(18) to estimate mag-
nitude of the shift x̂i. Such information is then sent together with
input and output data of the control horizon as new data of the next
observation window. Parameter estimation is then performed with
x̂inðkiÞ added to the Eq. (10).

3. Simulation study

3.1. IMA(1,1) disturbance

To demonstrate the ability of the dynamic ANOVA control, a
simulation example consisting of two tools and three products
was used:

yðk1Þ ¼ xðk1Þ þ cT
1ðk1Þ þ cP

jðk1Þ þ m1ðk1Þ k1 ¼ 1 � � �K1;

jðkiÞ ¼ 1;2;3 ð20Þ
yðk2Þ ¼ xðk2Þ þ cT

2ðk2Þ þ cP
jðk2Þ þ m2ðk2Þ k2 ¼ 1 � � �K2;

jðk2Þ ¼ 1;2;3 ð21Þ

The metrology noise is normally distributed with zero mean and
variance of 0.01, i.e. mi(ki) 2 N(0,0.12). The product disturbances
are constant with ½cP

1; c
P
2; c

P
3� ¼ ½6;10;17�. The tool disturbances are

represented by a constant plus an IMA(1,1) process:

cT
1ðk1Þ ¼ 5þ g1ðk1Þ ð22Þ

g1ðk1Þ ¼ g1ðk1 � 1Þ þ e1ðk1Þ � h1e1ðk1 � 1Þ h1 ¼ 0:5 ð23Þ
cT

2ðk2Þ ¼ 7þ g2ðk2Þ ð24Þ
g2ðk2Þ ¼ g2ðk2 � 1Þ þ e2ðk2Þ � h2e2ðk2 � 1Þ h2 ¼ 0:2 ð25Þ

The stochastic parts of the two tool noises are also normally distrib-
uted with zero mean and variance of 0.04, i.e.
e1(k1),e2(k2) 2 N(0,0.22). The tool and product adopted for each
run is randomly selected based on a given probability of occurrence.
The two tools have equal probability distribution. The probability
distributions of product A, B, and C for the examples of Section
3.1–3.3 are 0.3, 0.3 and 0.4, respectively.

In our simulation study, an observation window of 500 runs and
a control horizon of 100 runs were used in the implementation of
the proposed algorithm which is denoted as d-ANOVA. The obser-
vation window is used to estimate model parameters and the ob-
tained model is adopted in the next control horizon. During the
control horizon, l, si and pj remain constant and gi is updated
recursively to capture the tool dynamics. As the control horizon
moves on, the procedures are repeated which means that the pro-
posed algorithm is implemented in a moving window approach.

The results are compared with the static ANOVA (s-ANOVA) ap-
proach proposed by Ma et al. [10], and threaded EWMA control,
which is denoted by t-EWMA. It is expected a better model implies
better control results. However, it should be pointed out that two
main elements included our model: (i) the mixed run nature of
the production and (ii) the presence of different tool disturbances,
are common characteristics of real production processes. t-EWMA
and s-ANOVA results are included to show how failure to such ele-
ments degrade controller performance.

Figs. 2–4 show the simulation results of three control windows
for the d-ANOVA approach, s-ANOVA method and t-EWMA algo-
rithm. For the t-EWMA method, the tuning parameter k is 0.5 for
threads on tool 1 and 0.8 for threads on tool 2. It can be seen that
the d-ANOVA approach has the best performance. The variance of
the output under the control of d-ANOVA approach is 0.057 which
is very close to the minimum variance 0.053 [11, p. 128]. The vari-
ances of the output under the control of s-ANOVA and t-EWMA
algorithm are 0.076 and 0.105, respectively.

606 M.-D. Ma et al. / Journal of Process Control 19 (2009) 604–614
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The actual ðcT
i Þ and estimated ðl̂þ ŝi þ ĝiÞ dynamic trends of

the two tools identified by the d-ANOVA approach are shown in
Fig. 5. There is a constant offset between the real and estimated
tool dynamics because only the relative states are available as
we stated in above section. It can be seen that the tool dynamic
trends can be correctly estimated.

3.2. Step change (shift)

When a tool undergoes a maintenance event, it would be rec-
ognized as a step disturbance in the tool disturbance. In the fol-
lowing example, there is a preventive maintenance for tool 1 at
the 150th run which causes a shift disturbance of magnitude 4.

The responses of the first 300 runs under the control d-ANOVA,
s-ANOVA and t-EWMA algorithm are shown in Figs. 6–8, respec-
tively. The mean and variances of the output under the control of
d-ANOVA, s-ANOVA and threaded EWMA algorithm are
(0.002,0.069), (0.002,0.091) and (0.013,0.15), respectively. It
should be noted that for threaded EWMA, 3 spikes are observed
because each of the 3 threads on tool 1 has to encounter at least
1 run before the threaded EWMA controller begins to take effect.
The s-ANOVA experiences one large spike and gradual conver-
gence due to the recursive estimator used. The actual dynamic
trends of the two tools and estimated relative dynamic trends
of the two tools are shown in Fig. 9. Again it is found that tool
dynamic can be correctly estimated.
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-0.4

-0.2

0

0.2
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y
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Mean=-0.005
σ

Fig. 2. Response under the control of d-ANOVA algorithm.
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Fig. 3. Response under the control of s-ANOVA algorithm.
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The PM magnitude can be estimated using the method outlined
in Section 2.6, an estimated shift of x̂ ¼ 3:99 was found. Figs. 10
and 11 show the breakdown of the tool state l̂þ ŝi þ ĝi with and
without this intervention analysis of 1000 runs. If we ignore this
intervention event, then the disturbance term will show a shift
during the window when it happens, then the d-ANOVA states
l + s1 will show a small shift as data after shift is included into
the observation window. Later another large shift will occur when
the last batch of data before the shift is excluded from the observa-
tion window. Similarly, the dynamic term g1 will show corre-
sponding shifts when it occurred, and regression window include
data after shift and when data before shift move out of the regres-
sion window. If intervention analysis are included and the point of
intervention identified, the data before and after shifts are

regressed separately. As shown in Fig. 10, all shifts of the d-ANOVA
states l + s1 are found when data of the control window in which
the shifts occur are included into the observation windows. It can
be observed in Fig. 11 that no shifts were observed when the data
before shift move out of the regression window when intervention
analysis is implemented. The dynamic term g1 will show shifts
only when it occurred, and regression window include data after
shift. There is no obvious difference between the controller perfor-
mances whether intervention event analysis is included or not.
However the use of intervention event analysis alerts operator to
events of tool shifts near the time point only when it actually hap-
pens. Without intervention event analysis, the operator may misin-
terpret shifts of d-ANOVA states due to exclusion of a previous
event from the regression window.
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2=0.105

Mean=-0.009
σ

Fig. 4. Response under the control of t-EWMA algorithm.
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Fig. 5. Real and estimated tool effects (real —, estimated ---).
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3.3. Product carry over

As stated above, some products may disappear for a period of
time and come back on-line. When the off-line time is longer than
the length of regression window, the corresponding parameter is
not estimated in the last regression window as it comes back again.
In this case, the product effect should be estimated by the method
described in Section 2.5. In this example, product C was off-line
after 100 runs and did not appear until 801st run. The relative AN-
OVA states of product A, B, and C estimated after the first regres-
sion window are �5, �1, and 6, respectively. Because of tool
change, the ANOVA states of product A, B and overall mean esti-
mated after the 7th regression window are �2.00, 2.00, respec-
tively. When the product C came back at the 801st run, the

product effect can be estimated by Eq. (15) a value of
�2 + 6 � (�5) = 9 or 2 + 6 � (�1) = 9 in the first control window.
At the 900th run, a new set of product parameters are estimated.
Note that s-ANOVA is not included in this particular case because
the observation matrix will become ill-condition in case of some
products are off-line (as shown in our previous work [10]).

The responses under the control of d-ANOVA and t-EWMA algo-
rithm are shown in Figs. 12 and 13. The variance of the output un-
der the control of d-ANOVA approach is 0.054. The variance of the
output under the control of threaded EWMA approach is 0.091. It
can be seen that for the t-EWMA control there are two prominent
spikes when the product C come back on-line. It should be pointed
out that when the product comes back on-line after a long period
of absence, the conditions of the tools have changed. Threaded
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Fig. 6. Response under the control of d-ANOVA algorithm.
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Fig. 7. Response under the control of s-ANOVA algorithm.
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EWMA failed to account for this and must wait for new data with
substantial offsets to come before controller took effect. The tran-
sition of d-ANOVA is much smoother. The performances of product
C under the control of d-ANOVA and t-EWMA algorithm are 0.058
and 0.12, respectively. The real and estimated tool effect is shown
in Figs. 14. It can be seen that there a change in value when the
product C disappeared and come back from the regression window.

3.4. Performance comparison for products with different distribution
levels

In this section, the performance of the three control algorithms,
d-ANOVA algorithm, s-ANOVA method and t-EWMA algorithm for
the ‘‘infrequently” products is investigated. The same simulation

example of Section 3.1 is used, but the probability distributions
of products A, B and C are adjusted to 0.6, 0.35 and 0.05, respec-
tively. The results are shown in Table 1. Mean squared deviation
(MSD) between the process output and the target is used to evalu-
ate the performance of the three control algorithms. We can see
that the d-ANOVA has the smallest MSD in all cases and there
are no obvious differences among large, medium and small quan-
tity products. The t-EWMA algorithm has comparable performance
with the d-ANOVA algorithm for the products with large quantity
(product A). However, it has poor performance for small quantity
product (product C).

To see the effect of percentage of product distribution on the
performance of products, a simulation example is implemented
in which the percentage of C ranges from 1% to 30% and percentage
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Fig. 8. Response under the control of t-EWMA algorithm.
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Fig. 9. The real and estimated tool effects (real —, estimated ---).
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of A changes from 64% to 35%. When percentage of C is small, sim-
ulation for each case was performed multiple times and an average
value was taken. Fig. 15 shows the changes of MSD value with the
percentage of C for the three control algorithm discussed in this
paper. It is obvious that the performance of t-EWMA deteriorates
substantially as the product decreases in quantity. However the
mean square deviations remain relatively constant for the two AN-
OVA based methods.

3.5. Model structure error

In above sections, it is shown that good control performance can
be obtained when the model is identified correctly. However, in
real practice, the dynamics of the disturbance is very complex
and the model structure adopted by the algorithm is simple for
the easy implementation in most cases. Therefore, it is of interest

Fig. 10. ANOVA tool states estimated with and without intervention event analysis.

Fig. 11. Dynamic term estimated with and without intervention event analysis.
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Fig. 12. Response under the control of d-ANOVA in the case of product coming off-line and back on-line.
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to study how the control performance would be when there is
model structure error exists.

Consider an example in which the two tool disturbances are
represented by ARIMA(1,1,3) processes

ð1� 0:2BÞð1� BÞg1ðk1Þ ¼ ð1� 0:1B� 0:41B2 þ 0:105B3Þe1ðk1Þ
ð1� 0:1BÞð1� BÞg2ðk2Þ ¼ ð1� 0:1B� 0:22B2 þ 0:04B3Þe2ðk2Þ

The tool disturbance models adopted by the algorithm,
ĝiðkiÞ ði ¼ 1;2Þ, are assumed to be IMA(1,1) processes. The control
performances of the three methods: EWMA, s-ANOVA and d-AN-
OVA at different levels of noises are shown in Table 2. It is found
that the d-ANOVA approach has consistently the best perfor-
mance among the three methods. In actual practice, various iden-
tification techniques can be used to ensure that the model
structure assumed is a reasonable one. In this work, we merely
wish to show that including a dynamic term can lead to im-
proved performance.
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Fig. 13. Response under the control of t-EWMA algorithm in the case of product coming off-line and back on-line.
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Fig. 14. Real and estimated tool effects (real —, estimated ---).

Table 1
Performance for products with large, medium and small quantity

Method Measure

MSDA MSDB MSDC MSD

d-ANOVA 0.055 0.057 0.055 0.055
s-ANOVA 0.068 0.078 0.084 0.073
t-EWMA 0.072 0.099 0.364 0.098
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4. Industrial example

In this section, wafer etching production data is used to test the
effectiveness of the proposed algorithm. The collected wafer etch-
ing production data was originally under the control of s-ANOVA
method. For such a process, it is known that aging effects such as
the depletion of the etch solution or the degradation of the thermo-
couples in high temperature furnaces can induce trend or ramp
disturbances. We use an IMA(1,1) process, the dynamic term, to
characterize the disturbance. 2 tools, 6 product and 200 runs are
picked up to implement the proposed algorithm. The data was
standardized to have overall mean zero and overall variance 1.
The controlled output is plotted in Fig. 16.
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Fig. 15. Changes in mean square deviation versus percentage of product distribution.

Table 2
Performances for three methods under different noise level

Noise variance of input disturbance Output variance

t-EWMA s-ANOVA d-ANOVA

r2
e ¼ 0:04 0.118 0.078 0.061

r2
e ¼ 0:16 0.465 0.313 0.214

r2
e ¼ 0:64 1.75 1.05 0.72
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Fig. 16. Normalized production data.
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The control results of dynamic ANOVA algorithm, s-ANOVA
method and threaded EWMA method for different products are
summarized in Table 3. The overall variances of the output under
the control of d-ANOVA, and t-EWMA algorithm are 0.93 and
1.04, respectively. It should be noted that the three algorithms
have almost equivalent performance for products with large lot
counts, P3, P4, P5 and P6. t-EWMA algorithm guarantees asymp-
totic zero mean offset for individual products. Hence for products
of large quantity, they have near zero offsets. ANOVA models re-
sults in overall zero offsets. Hence for large volume products only
the overall mean of all products are maintained at zero offset.
t-EWMA method has poorer performance for infrequent products,
P1, P2. This is due to the fact that the tool condition may be quite
different from the last run of the same thread. d-ANOVA is better
than s-ANOVA, no intervention events have been detected. Hence
inclusion of dynamic term to the ANOVA model is the main reason
for better performance.

5. Conclusions

It is very important in RtR control of a mixed run plant to cor-
rectly identify the changes in condition of tool as well as the differ-
ence in behavior between tools and products. In this work, a novel

mixed product run-to-run controller is proposed. The method of
ANOVA is used to estimate the difference in behavior between
tools and products and a dynamic term is included in the process
model to characterize the run-to-run disturbance such as drift,
shift and/or some other unknown disturbances. The effectiveness
of the proposed algorithm is illustrated by different simulation
examples in which scenarios tools drift and shift, product going
off-line and coming back on-line are examined. The effect of prod-
uct distributions on controller performances is also investigated. It
is found that the performance of ANOVA based controller for prod-
ucts with small quantity is comparable to those with large quan-
tity. The advantage of the d-ANOVA algorithm is also
demonstrated using an industrial example.
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Table 3
Performances of different products under the control of d-ANOVA, s-ANOVA and t-
EWMA algorithms

Product(counts) d-ANOVA s-ANOVA t-EWMA

STD Mean STD Mean STD Mean

P1(5) 0.5 0.17 0.80 0.48 1.07 0.09
P2(4) 0.73 �0.05 1.20 0.17 1.15 �0.75
P3(35) 0.87 �0.03 1.03 �0.01 1.00 �0.06
P4(28) 0.96 0.19 0.88 0.12 0.93 �0.16
P5(51) 0.78 �0.24 0.89 0.05 0.86 �0.08
P6(77) 1.05 0.09 1.04 0.18 0.97 �0.06
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