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bstract

Biological information generated by high-throughput technology has made systems approach feasible for many biological problems. By this
pproach, optimization of metabolic pathway has been successfully applied in the amino acid production. However, in this technique, gene
odifications of metabolic control architecture as well as enzyme expression levels are coupled and result in a mixed integer nonlinear programming

roblem. Furthermore, the stoichiometric complexity of metabolic pathway, along with strong nonlinear behaviour of the regulatory kinetic models,
irects a highly rugged contour in the whole optimization problem. There may exist local optimal solutions wherein the same level of production
hrough different flux distributions compared with global optimum. The purpose of this work is to develop a novel stochastic optimization

pproach—information guided genetic algorithm (IGA) to discover the local optima with different levels of modification of the regulatory loop
nd production rates. The novelties of this work include the information theory, local search, and clustering analysis to discover the local optima
hich have physical meaning among the qualified solutions.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Complex systems such as biological systems are basically
omplicated with many integer and real variables, numerous
eactions, and material/energy balance equations, especially
n metabolic network problems. Although many discussions
ocused on the optimal design of the metabolic networks, one of
he basic problems—the physical meanings of the feasible local
ptima, has not yet been studied. The objective of this study is
o develop a systematic approach that allocates the feasible local

ptima, and discuss the rationality and feasibility of the network
tructure.
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Almost every metabolic reaction network is subjected to a
egulatory architecture built around it. In many works, the non-
inear biological systems are transferred to linear systems by
aking logarithmic transformation. The S-system, for example,
as been widely implemented in the problem formulation of
etabolic engineering. It is necessary to develop mathematical

ools to analyze and optimize integrated biochemical systems.
ome literatures, e.g., Voit (1992), used linear programming
pproach to solve a simplified metabolic network, the other,
.g., Hatzimanikatis et al. (1996), implemented MILP to solve an
ptimal solution from super-structure of a metabolic network. In
he work by Hatzimanikatis et al. (1996), a very complete study
n the synthesis of pathway of XMP and GMP was conducted.
heir solution is also general to solve different types of MINLP.
owever, in case of mixed integer programming problems, it
ad been well-known that the solutions of such a problem may

ot be unique and subject to rugged contour (Grossmann and
argent, 1979). In this work, we further study the example stud-

ed by Hatzimanikatis et al. (1996) by taking a different view
f the original problem to find the other qualified local optimal

mailto:ssjang@che.nthu.edu.tw
dx.doi.org/10.1016/j.jbiotec.2007.06.019


160 Y. Zheng et al. / Journal of Biotech

Nomenclature

D the sum of the distance of all individuals in each
population

Dt a constant set as a threshold
m acceptable original solutions are selected to con-

struct clusters
mr the number of solutions in cluster r
ms the number of solutions in cluster s
Pl the amount of manipulated variable l (l = 1, . . ., 6)
ql the logarithm of Pl (l = 1, . . ., 6)
wl binary variables (l = 1, . . ., 6) represent whether

the concentration of enzyme is changed or not
xij the jth variable of the ith individual of the popu-

lation
Xj the concentration of the metabolite j (j = 1, . . ., 4)
yr,i the ith solution in cluster r
Yj the logarithm of Xj
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In Section 2, description of the example studied in this work
and transformation techniques for S-system is introduced. It
should be noted that although S-system is adopted in this work,
the whole approach derived by this work is not limited to S-
zij binary variables represent the modification of reg-
ulatory loop

olutions of the problem, and study the physical meaning of
hese solutions.

Many researches have discussed alternate solutions in the
ptimization of metabolic models. Lee et al. (2000) imple-
ented a recursive MILP algorithm to find all alternate optima,

nd explored a metabolic engineering problem in bacteriology.
ahadevan and Schilling (2003) used linear programming (LP)

nd quadratic programming (QP) methods to analyze the effect
f the alternate optimal solutions on the predictions of the mutant
rowth rates. In recent works, dynamic behaviour has been
n issue for optimization of metabolic pathways. Additional
onstraints are added for stability, robustness and uncertainty
onsideration, e.g., Chang and Sahinidis (2005).

Solution of optimal metabolic regulatory network problems
an be formulated into a mixed integer nonlinear programming
roblem (MINLP). As reported in literature (see, e.g., Adjiman
t al., 1997), it is well known that many local optima exist in
hese MINLP problems; and global optimum is very difficult to
iscover. In fact, the discovery of all alternative regulatory struc-
ures would be helpful to understand and improve the metabolic
roductivity. Furthermore, since only limited observations on
etabolic network were available, understanding alternative

egulatory networks will suggest us explanations for the lim-
ted observations (see e.g., Lee et al., 2000). Finding alternative
egulatory networks will reveal the various ways in which bio-
hemistry and physiology can give us explanation for the limited
bservations (see e.g., Lee et al., 2000). Besides, the impact of
he qualified local optimal solutions on the biological conclu-
ions drawn from a simulated flux distribution could range from
eing negligible to being highly significant (see e.g., Mahadevan

nd Schilling, 2003).

In solving general MINLP, some stochastic approaches
ttracted much attention in this area, e.g., Cardoso et al.
1998). In their work, stochastic optimization solver—genetic
nology 131 (2007) 159–167

lgorithm (GA) is implemented to solve this MINLP prob-
em. Evolutionary algorithms, such as GA, have been widely
pplied to many engineering problem. Compared to gradient
ptimization techniques, one of the benefits of evolutionary
lgorithms is that only the information regarding the objec-
ive function is required. Genetic algorithm was developed by
olland (1975). It offers robust procedures that can exploit
assively parallel architectures and can be applied to classi-
er systems. Many further modifications to the original GA
ave been investigated by numerous researchers, for instance,
ulti-agent approaches (e.g., Tomassini et al., 2003, 2004), col-

ocation design of initial points (see, e.g., Zhong et al., 2004). In
heir work, information theory is applied to modify the original
A such that the efficiency of the algorithm can be improved.
n the other hand, the local optima together with possible
lobal optimum of the biological system can be conveniently
bserved.

Information entropy was proposed by Shannon (1948) for
andling signal community problem. From then on, infor-
ation entropy has been widely applied in many areas. It

an be used as a measurement of the diversity of data. By
ncorporating information theory to GA, the feasible solu-
ions can be chosen. Different types of solutions, which
re of bio-engineers’ interest, are given after the cluster
nalysis. The results in this work show that different regu-
atory networks at the cluster centres can be found without
urther mathematic treatments of these complicated system
odels.
The rest parts of this work are organized as the following:
Fig. 1. Simplified XMP and GMP synthesis pathway.
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.37z

q2 +

3 +
43y3
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ystem model. The Information-guided GA (IGA) approach can
e conveniently implemented based on other types of models. In
ection 3, the novel optimization approach—IGA approach and
lustering analysis for solving qualified local optima of MINLP
re derived. In Section 4, the solutions of the problem described
n Section 2 are presented and discussed. Conclusive remarks
re given in Section 6.

. Background

.1. Problem formulation

Savageau (1969) applied power-law approximation to eval-
ate biochemical processes, which combined enzyme kinetics
nd Bode analysis to linearize a nonlinear biochemical system.
s shown in Fig. 1, Voit (1992) illustrated an example on yield
ptimization in xanthine monophosphate (XMP) and guanosine
onophosphate (GMP) production.
There are two kinds of modifications involved in the above

etabolic network: enzyme activity changes (P’s) and regu-
ation architectural changes (solid or dash lines). The former
an be implemented through amplifying the expression level
f the gene corresponding to the enzyme or through pro-
ein engineering that enhances the enzyme’s activity. The
egulatory architectural changes are much more involved in
olecular biological manipulation. It may involve modifica-

ion (or creation) of an entire regulatory pathway. Optimization
f the possible metabolic network would suggest guide-
ines and ways to achieve the best results without too many
epeating efforts in genetic engineering. Let Xj represent the
oncentration of the metabolite j (j = 1, . . ., 4); Pl repre-
ents the amount of manipulated variable l (l = 1, . . ., 4); and
ashed lines denote inhibition, dashed-dotted lines activation.

Maximize y4

Subject to

− 0.5y1 + 0.1y2 − 0.3y3 − 0.3y4 − z13ε13y3 − z14ε14y4 +
+ 0.6z22ε22y2 + 0.6z23ε23y3 + 0.6z24ε24y4 + 0.4z34ε34

0.308y1 − 0.482y2 + 0.177y3 + 0.4y4 − 0.37z21ε21y1 − 0

− 0.385z43ε43y3 + 0.4z53ε53y3 + 0.6z64ε64y4 + 0.37w2

− 0.4w5q5 − 0.6w6q6 = 1.7863

− 0.14y1 + 0.409y2 − 0.817y3 − 0.014y4 − 0.455z53ε53y

0.041y2 + 0.026y3 − 0.799y4 − 0.405z64ε64y4 + 0.26z43ε

bounds on yj, j = 1, 2, 3

ln(4.9) ≥ y1 ≥ ln(6.0)

ln(192) ≥ y2 ≥ ln(234)

ln(2176) ≥ y3 ≥ ln(2660)
bounds on Pl, l = 1, . . . , 6

ln(PL
l ) ≥ Pl ≥ ln(PU

l )
nology 131 (2007) 159–167 161

Mass balance:

dX1

dt
=900X−0.5

3 X−0.5
4 P1 − 10X0.5

1 X−0.1
2 X−0.2

3 X−0.2
4 P0.6

2 P0.4
3 ,

dX2

dt
= 7.34X0.308

1 X−0.062
2 X−0.162

3 X−0.1
4 P0.37

2 P0.245
3 P0.385

4

− 43.8X0.42
2 X−0.339

3 X−0.5
4 P0.4

5 P0.6
6 ,

dX3

dt
= 2.71X0.409

2 X−0.387
3 P0.455

5

−0.036X0.041
1 X0.43

3 X−0.014
4 P0.28

3 ,

dX4

dt
= 13.03X0.041

2 X−0.399
4 P0.405

6 − 0.143X−0.026
3 X0.40

4 P0.26
4

(1)

he goal of optimization is to maximize the steady state con-
entration of X4, while the constraints of X1, X2, and X3 are
estricted in 90%–110% of the steady state concentrations, and
nzyme level changes are limited to the range within 20–500%.
ariables zij are introduced to represent the modification of

egulatory loop, and wl are used to represent whether the concen-
ration of enzyme is changed or not. The problem of consistency
as to be considered when transforming the nonlinear model to
INLP, and some modifications was made by Hatzimanikatis

t al. (1996).
Hatzimanikatis et al. (1996) discussed the modification in

egulatory architectures for optimizing XMP and GMP yield.
hey transformed the nonlinear S-system into linear system and

ntroduced binary variables as a set of key transformations to for-
ulate the optimal manipulation of biochemical system to be a
ILP problem. After logarithm transformation and modifica-

ion of the steady state mass balance model as illustrated above,
he optimization of maximizing X4 in the metabolic network can
e expressed as the following.

Let yi = ln Xi, the optimization problem becomes:

z21ε21y1

w1q1 − 0.6w2q2 − 0.4w3q3 = −4.4998

22ε22y2 − 0.37z23ε23y3 − 0.37z24ε24y4 − 0.245z34ε34y4

0.245w3q3 + 0.385w4q4

0.287z34ε34y4 − 0.28w3q3 + 0.455w5q5 = −4.3212

− 0.26w4q4 + 0.405w6q6 = −4.5122

(2)
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here wl(l = 1, . . . , 6) and {z13, z14, z21, z22, z23, z24, z34, z34,

43, z53, z64} are binary variables(1 or 0), yj(j =1, . . ., 4) and ql
l = 1, . . ., 6) are continuous variables; L represents lower bound,

represents upper bound.
Note that Hatzimanikatis et al. (1996) further implemented

inearization transformation techniques on the bilinear terms (zij,
l, ql and yj) in Eq. (2) to solve this problem as a linear pro-
ramming problem. After MINLP problem is transformed into
n MILP problem, 16 variables and 64 constraints were added.
n this work, genetic algorithm is used to solve this MINLP
roblem without any treatment of bilinear terms. Therefore, no
dditional variables and constraints are required, i.e., Eq. (2) is
irectly solved.

As indicated above, the objective of this work is to find
ll qualified local optima of Eq. (2) such that y4 ≥ ymin. The
ethod is introduced in the next section. It should be noted that

he result derived here is not limited to S-system expression of
etabolic pathways since the solution method is general for all
INLP’s.

.2. The basic genetic algorithm

In genetic algorithm theory (see, e.g., Gen and Chang,
000; Vose, 1999), five basic operators should be consid-
red in genetic algorithm: coding, fitness evaluation, selection,
rossover, and mutation. Selection focusing on the best indi-
iduals will make genetic search go to narrow regions quickly,
ut the genetic search may be trapped on local optimal or
o be terminated prematurely. Wild search is suggested at
he beginning of a genetic search, and local search is sug-
ested at the end of the genetic search. One of the linear
rossover approaches—Intermediate recombination is adopted
n this study. Mutation plays an important role in exploring
olution space especially when genetic operation is trapped at
ocal optima. A novel mutation approach is presented in the next
ection.

. Information guided genetic algorithm

The basic idea of the proposed approach – information guided
enetic algorithm (IGA) – is to detect the pre-maturity (i.e. the
ndividuals of each generation is very close to each other) of
he algorithm. Once the pre-maturity happens, an information
uided mutation is performed. We also propose to implement a
odified penalty function and local search for these particular

roblems as described below. Cluster analysis is proposed to
iscover the qualified local optima of the problem after imple-
entation of IGA.

.1. The pre-maturity detector
The detector of probable pre-maturity is introduced for
etecting the situation of potential pre-maturity. In this work,
e implement a premature detector D that is the sum of the dis-

ance of all individuals in each population. Suppose, xi,j is the

p
p
a
m

nology 131 (2007) 159–167

th variable of the ith individual of the population:

=
N∑

j=1

M∑

i = 1

i �= d

|xi,j − xd,j| (3)

hile D ≈ 0 means probable premature situation occurs and all
he individuals are the similar. In practice, it is necessary to set
threshold Dt such that D > Dt, otherwise information entropy
uided mutation be will implemented to get ride of premature
ituation.

.2. Information (IF) entropy mutation

Genetic operation may trap on local optima when probable
re-maturity happens. In order to get rid of probable premature,
e introduce information entropy to refresh the probable pre-
ature population. According to Shannon’s definition (1948),

he information entropy of the set X is

(X) = −
∑

x ∈ X

p(x) ln p(x) (4)

here p(x) is the probability of the event x occurring. Infor-
ation entropy is a measure of how random a variable is

istributed, and can be implemented to measure the diversity
f the sampled data-set distributed in the solution space. The
igher information entropy of a variable means the more diverse
f the variable distributed in the solution space. The information
uided mutation approach calculates the information entropy
f each variable in MINLP. Variables have lowest information
ntropy are selected to perform information guided mutation to
ncrease their information entropy. Yeh and Jang (2006) have
iscussed how to select the variables to be mutated. And the
lements of new individuals will be generated by assigning ran-
om values in the range of the solution space of the selected
ariables.

.3. Penalty function

Crossover and mutation may generate infeasible offspring
uring constrained optimization. Most of genetic algorithms
pply penalty term to the original objective function, which
akes infeasible solutions undesirable. The penalty function

roposed by Barbosa and Lemonge (2004) is adopted and
evised to handle infeasible solution.

.4. Local search

Ombuki and Ventresca (2004) mentioned local search dur-
ng mutation would accelerate convergent speed, but extend the
omputed time. A trade-off between convergent speed and com-

utation time is necessary. In our study, local search is performed
eriodically after several generations, and only discrete variables
re considered in local search to stress the influence in regulatory
odification.



Y. Zheng et al. / Journal of Biotechnology 131 (2007) 159–167 163

gorith

3

c
m
l
a

T
t
o

Fig. 2. The al

.5. Clustering analysis for qualified local optima

Let m acceptable original solutions are selected to construct

lusters. Euclidean distances between pairs of solutions are esti-
ated for establishing a full-connected network, i.e., m(m − 1)/2

inkages are generated in the network. The estimated distances
re used to determine the proximity of solutions of each other.

Fig. 3. Comparisons of the performance four different GA approaches.
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m flowchart.

he nearest neighbours of solutions are grouped into binary clus-
ers, and the newly formed clusters are linked to each other
r to other solutions to generate bigger clusters until all the
olutions in the original solution set are linked together in a
ierarchical tree. If mr is the number of solutions in cluster r,
s is the number of solutions in cluster s, and xr,i is the ith

olution in cluster r, the definition of nearest neighbours is as
ollows:

(r, s)=min(d(xr,i, xs,j)), i ∈ (1, . . . , mr), j ∈ (1, . . . , ms)

(5)

he m − 1 nearest neighbours, with smallest distance between
olutions in clusters, are selected to create a hierarchical clus-
ering tree.

.6. The algorithm

The overall flowchart is showed in Fig. 2. When pre-

aturity happens, the information guided mutation scheme is

erformed. Local search will be performed under a proper
robability after reinsertion. After the information guided
enetic algorithm is performed, the qualified solutions are
ecorded. Clustering analysis is used on several batches of the
ecords.
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Table 1
Comparison of the statistics of four different GA’s for the regulatory metabolic reaction

GA GA + IF GA + local IGA (GA + IF + local)

A 4
S 561
F

4

4
G

E
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t
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a
in this work with the original solution will help in elucidating
the usefulness of this method. As shown in Fig. 5 and Table 2,
solution #1 has the same regulatory architecture with the orig-
inal one, but the enzyme activity changes of P3, P5 and P6 are
verage 8.9284 10.68
TD 3.4368 0.46
unction call 67359 67358

. Results

.1. Local/global optima of the production of XMP and
MP

Fig. 3 gives the histories of the objective function value of
q. (2) as a function of generation number based on the aver-
ge of 50 simulation runs. As shown in Fig. 3, the performance
f IGA is superior to other GA’s. The comparison of the statis-
ics of all four approaches is shown in Table 1. Compared with
raditional GA, traditional GA + information guided mutation
nly and traditional GA + local search only, the proposed method
IGA) implement the slightly higher average number of func-
ion calls per run, the statistics of the objective function values
re much superior to other GA’s. In these four cases, maximum
eneration number is set to be 2600, local search is performed
n every 400 generations, and the population size is set to be
4. The premature detector parameter D is set to 1. As shown
n Fig. 3, it is obvious that by including information entropy
nd/or local search, the performance of GA can be drastically
mproved.

After 50 IGA batches, 463 feasible solutions are survived
n the solution set. Among them we selected 84 high score
olutions, which satisfy the following conditions: (1) q5 < 0;
2) q6 < 0; (3) q4 < 10.8, i.e. x4 > 49021. The integer variables
l(l = 1, . . . , 6), {z13, z14, z21, z22, z23, z24, z34, z43, z53, z64} and

he continuous variables ql (l = 1, . . ., 6) were used for clustering
nalysis. The continuous variables were normalized and mul-

iplied with wl before clustering analysis. According to the 16
inary and the 6 continuous parameters, we computed Euclidean
istance between these solutions and created the hierarchical
lustering tree. The dendrogram graph is shown in Fig. 4.

Fig. 4. The dendrogram graph.
10.375 10.951
1.3125 0.32403

79594 78670

As shown in Fig. 4, the level of Euclidean’s distance is set
qual to 1 for simplicity. In this case, only five clusters can
e identified from the clustering tree. Solutions in the same
luster have the same binary variables. That means the solu-
ions included in the same clusters are in the same regulatory
rchitecture and same type of enzyme respectively. Of course,
t is possible to analyze the solution set using lower level of
uclidean’s distance as shown in Fig. 4, but it is not tested in

his work.

. Discussion

Table 2 compares the solutions of the above five cluster cen-
res with the original solution obtained by Hatzimanikatis et al.
1996). The regulatory architectures of all cluster centres are
emonstrated in Figs. 5–9 respectively. P1+ and P2+ are univer-
ally required for all the solutions. P3− and P5− are less than
he reference enzyme level in original solution, solution #3 and
olution #5. The two inhibitory loops (z13 and z53) also appear in
ll solutions. Further comparison between the solutions obtained
Fig. 5. The regulatory architecture of solution #1.
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Table 2
The values of variables in original solution and IGA solutions #1–5

Node wl ql (l = 1, . . ., 6), qr + wl × ql = ln(Pl), qr = ln(100) = 4.605 {z13, z14, z21, z22, z23, z24, z34, z43, z53, z64} y4

Original solution (Hatzimanikatis et al., 1996) 111111 1.609 1.609 −0.363 1.609 −0.435 1.251 0101110001 55015.6
Solution #1 (t = 21) 110100 1.472 1.291 – 0.420 – – 0101110001 52575
Solution #2 (t = 7) 110100 1.126 1.473 – 0.464 – – 0100110001 49811
Solution #3 (t = 13) 111010 1.231 1.609 −1.609 – −0.235 – 0101111001 65121
Solution #4 (t = 5) 110001 1.609 1.609 – – – 0.292 0111110101 56613
Solution #5 (t = 12) 111011 1.534 1.607 −0.455 – −0.202 0.651 0101110101 69633
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Fig. 8. The regulatory architecture of solution #4.

latory loops. According to the common sense of metabolic
ngineering, it is very important to achieve an improvement
ith less modification of regulatory loop. Figs. 7–9 demon-

trate the regulatory structures of solution #3, #4 and #5. It

hould be noted that the solution #3, #4 and #5 result higher
oncentration of X4 than original solution, but they need one
ore modification on the regulatory loops. Notably, all of the

Fig. 9. The regulatory architecture of solution #5.
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ve solutions need less enzyme level changes than the original
olution.

In solution #2, the inhibit loop (z22) is kept. z22 will inhibit
he metabolic path from X1 to X2. That will take a negative effect
n increasing X4. The differences between solution #2 and #4
re the existence of P4, P6, z21, z22 and z43. In solution #2, the
ositive effect P6 for increasing X4 is removed. So the objec-
ive function value in solution #2 is slightly lower than that in
olution 4.

Comparing solution #4 with the original solution, the acti-
ated loop (z21), the inhibited loop (z43) and the three enzymes
P3, P4 and P5) are removed. With this simpler structure, solu-
ion #4 still has superior result than the original one. Comparing
olution #4 with solution #3 and #5, the activated loop (z21)
nd enzymes (P3− and P5−) are removed in the former. The
ctivated loop will help the metabolic path from X1 to X2. The
etabolic path of X2 to X3 and X2 to X4 are competitive to each

ther. While the concentration of X3 is increased, the concen-
ration of X4 will decrease. Decreasing the amount of P5 may
ead a decrease of metabolic flux from X2 to X3, therefore the
oncentration of X4 may be increased. However, it is clear that
he local optima at t = 12 (cluster center #5) and 13(cluster center
3) give the higher yields (X4 = 69633 and X4 = 65121 respec-
ively) compared with other cases. Notably, the original yield by
atzimanikatis et al. (1996) was X4 = 55015.6.

. Conclusion

Solution of optimal metabolic regulatory network problems
an be formulated into a mixed integer nonlinear programming
roblem (MINLP). In this work, genetic algorithm is imple-
ented to solve this MINLP problem. The information entropy

nd local search method are implemented to improve these
olution approaches for MINLP problem. Unlike deterministic
ptimization, the novel approach takes advantage of stochastic
ptimization without further variable transformation. Further-
ore, clustering analysis is implemented to allocate physically
eaningful local optima. The example taken in this work is the
roduction of XMP and GMP. The solutions make sense by
omparing to previous results. Useful local optima are discov-
red after clustering analysis. The results show that this approach
s valid and efficient.
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