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Abstract

Biological information generated by high-throughput technology has made systems approach feasible for many biological problems. By this
approach, optimization of metabolic pathway has been successfully applied in the amino acid production. However, in this technique, gene
modifications of metabolic control architecture as well as enzyme expression levels are coupled and result in a mixed integer nonlinear programming
problem. Furthermore, the stoichiometric complexity of metabolic pathway, along with strong nonlinear behaviour of the regulatory kinetic models,
directs a highly rugged contour in the whole optimization problem. There may exist local optimal solutions wherein the same level of production
through different flux distributions compared with global optimum. The purpose of this work is to develop a novel stochastic optimization
approach—information guided genetic algorithm (IGA) to discover the local optima with different levels of modification of the regulatory loop
and production rates. The novelties of this work include the information theory, local search, and clustering analysis to discover the local optima

which have physical meaning among the qualified solutions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Complex systems such as biological systems are basically
complicated with many integer and real variables, numerous
reactions, and material/energy balance equations, especially
in metabolic network problems. Although many discussions
focused on the optimal design of the metabolic networks, one of
the basic problems—the physical meanings of the feasible local
optima, has not yet been studied. The objective of this study is
to develop a systematic approach that allocates the feasible local
optima, and discuss the rationality and feasibility of the network
structure.
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Almost every metabolic reaction network is subjected to a
regulatory architecture built around it. In many works, the non-
linear biological systems are transferred to linear systems by
taking logarithmic transformation. The S-system, for example,
has been widely implemented in the problem formulation of
metabolic engineering. It is necessary to develop mathematical
tools to analyze and optimize integrated biochemical systems.
Some literatures, e.g., Voit (1992), used linear programming
approach to solve a simplified metabolic network, the other,
e.g., Hatzimanikatis et al. (1996), implemented MILP to solve an
optimal solution from super-structure of a metabolic network. In
the work by Hatzimanikatis et al. (1996), a very complete study
on the synthesis of pathway of XMP and GMP was conducted.
Their solution is also general to solve different types of MINLP.
However, in case of mixed integer programming problems, it
had been well-known that the solutions of such a problem may
not be unique and subject to rugged contour (Grossmann and
Sargent, 1979). In this work, we further study the example stud-
ied by Hatzimanikatis et al. (1996) by taking a different view
of the original problem to find the other qualified local optimal
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Nomenclature

D the sum of the distance of all individuals in each
population

Dy a constant set as a threshold

m acceptable original solutions are selected to con-
struct clusters

m, the number of solutions in cluster r

my the number of solutions in cluster s

P; the amount of manipulated variable [ (I=1, ..., 6)

qi the logarithm of P; (I=1, ..., 6)

wy binary variables (I=1, ..., 6) represent whether
the concentration of enzyme is changed or not

Xjj the jth variable of the ith individual of the popu-
lation

X; the concentration of the metabolite j j=1, ...,4)

Yr,i the ith solution in cluster r

Y; the logarithm of X;

Zij binary variables represent the modification of reg-
ulatory loop

solutions of the problem, and study the physical meaning of
these solutions.

Many researches have discussed alternate solutions in the
optimization of metabolic models. Lee et al. (2000) imple-
mented a recursive MILP algorithm to find all alternate optima,
and explored a metabolic engineering problem in bacteriology.
Mahadevan and Schilling (2003) used linear programming (LP)
and quadratic programming (QP) methods to analyze the effect
of the alternate optimal solutions on the predictions of the mutant
growth rates. In recent works, dynamic behaviour has been
an issue for optimization of metabolic pathways. Additional
constraints are added for stability, robustness and uncertainty
consideration, e.g., Chang and Sahinidis (2005).

Solution of optimal metabolic regulatory network problems
can be formulated into a mixed integer nonlinear programming
problem (MINLP). As reported in literature (see, e.g., Adjiman
et al., 1997), it is well known that many local optima exist in
these MINLP problems; and global optimum is very difficult to
discover. In fact, the discovery of all alternative regulatory struc-
tures would be helpful to understand and improve the metabolic
productivity. Furthermore, since only limited observations on
metabolic network were available, understanding alternative
regulatory networks will suggest us explanations for the lim-
ited observations (see e.g., Lee et al., 2000). Finding alternative
regulatory networks will reveal the various ways in which bio-
chemistry and physiology can give us explanation for the limited
observations (see e.g., Lee et al., 2000). Besides, the impact of
the qualified local optimal solutions on the biological conclu-
sions drawn from a simulated flux distribution could range from
being negligible to being highly significant (see e.g., Mahadevan
and Schilling, 2003).

In solving general MINLP, some stochastic approaches
attracted much attention in this area, e.g., Cardoso et al.
(1998). In their work, stochastic optimization solver—genetic

algorithm (GA) is implemented to solve this MINLP prob-
lem. Evolutionary algorithms, such as GA, have been widely
applied to many engineering problem. Compared to gradient
optimization techniques, one of the benefits of evolutionary
algorithms is that only the information regarding the objec-
tive function is required. Genetic algorithm was developed by
Holland (1975). It offers robust procedures that can exploit
massively parallel architectures and can be applied to classi-
fier systems. Many further modifications to the original GA
have been investigated by numerous researchers, for instance,
multi-agent approaches (e.g., Tomassini et al., 2003, 2004), col-
location design of initial points (see, e.g., Zhong et al., 2004). In
their work, information theory is applied to modify the original
GA such that the efficiency of the algorithm can be improved.
On the other hand, the local optima together with possible
global optimum of the biological system can be conveniently
observed.

Information entropy was proposed by Shannon (1948) for
handling signal community problem. From then on, infor-
mation entropy has been widely applied in many areas. It
can be used as a measurement of the diversity of data. By
incorporating information theory to GA, the feasible solu-
tions can be chosen. Different types of solutions, which
are of bio-engineers’ interest, are given after the cluster
analysis. The results in this work show that different regu-
latory networks at the cluster centres can be found without
further mathematic treatments of these complicated system
models.

The rest parts of this work are organized as the following:
In Section 2, description of the example studied in this work
and transformation techniques for S-system is introduced. It
should be noted that although S-system is adopted in this work,
the whole approach derived by this work is not limited to S-
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Fig. 1. Simplified XMP and GMP synthesis pathway.
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system model. The Information-guided GA (IGA) approach can
be conveniently implemented based on other types of models. In
Section 3, the novel optimization approach—IGA approach and
clustering analysis for solving qualified local optima of MINLP
are derived. In Section 4, the solutions of the problem described
in Section 2 are presented and discussed. Conclusive remarks
are given in Section 6.

2. Background
2.1. Problem formulation

Savageau (1969) applied power-law approximation to eval-
uate biochemical processes, which combined enzyme kinetics
and Bode analysis to linearize a nonlinear biochemical system.
As shown in Fig. 1, Voit (1992) illustrated an example on yield
optimization in xanthine monophosphate (XMP) and guanosine
monophosphate (GMP) production.

There are two kinds of modifications involved in the above
metabolic network: enzyme activity changes (P’s) and regu-
lation architectural changes (solid or dash lines). The former
can be implemented through amplifying the expression level
of the gene corresponding to the enzyme or through pro-
tein engineering that enhances the enzyme’s activity. The
regulatory architectural changes are much more involved in
molecular biological manipulation. It may involve modifica-
tion (or creation) of an entire regulatory pathway. Optimization
of the possible metabolic network would suggest guide-
lines and ways to achieve the best results without too many
repeating efforts in genetic engineering. Let X; represent the
concentration of the metabolite j (j=1, ..., 4); P; repre-
sents the amount of manipulated variable [ (I=1, ..., 4); and
dashed lines denote inhibition, dashed-dotted lines activation.

Maximize y4
Subject to

Mass balance:

dX
dtl —900 X;o.s X;O'S P —10 X?‘S XzfoAl X;O‘z X;O'z P20.6 Pg)A,
dX
dzz —734 X(]).308 X2—0.062 X3—04162 XZO.I Pg.37 P§"245 Pff-385
_ 438 X<2).42 X3—0.339 X;O'S Pg).4 po6.
dXs 0.409 v+ —0.387 10.455
? = 27 ] X2 X3 P5
—0.036 X(1>A041 X(3)‘43 XZO.OM P§).28’
dX
dt4 —13.03 Xg.om XZ0'399 Pg.405 —0.143 X3—04026 Xg.4o P£.26

ey

The goal of optimization is to maximize the steady state con-
centration of X4, while the constraints of Xi, X», and X3 are
restricted in 90%—110% of the steady state concentrations, and
enzyme level changes are limited to the range within 20-500%.
Variables z;; are introduced to represent the modification of
regulatory loop, and w; are used to represent whether the concen-
tration of enzyme is changed or not. The problem of consistency
has to be considered when transforming the nonlinear model to
MINLP, and some modifications was made by Hatzimanikatis
et al. (1996).

Hatzimanikatis et al. (1996) discussed the modification in
regulatory architectures for optimizing XMP and GMP yield.
They transformed the nonlinear S-system into linear system and
introduced binary variables as a set of key transformations to for-
mulate the optimal manipulation of biochemical system to be a
MILP problem. After logarithm transformation and modifica-
tion of the steady state mass balance model as illustrated above,
the optimization of maximizing X4 in the metabolic network can
be expressed as the following.

Let y; =1n X;, the optimization problem becomes:

—0.5y;1 +0.1y2 — 0.3y3 — 0.3y4 — 2138133 — 214€14Y4 + 0.6221€21 )1
+0.622022y2 + 0.6223623y3 + 0.6224624y4 + 0.4234834y4 + w191 — 0.6wrg2 — 0.4w3gq; = —4.4998

0.308y1 — 0.482y2 + 0.177y3 + 0.4y4 — 0.37221821)11 — 0.37222822}12 — 0.37223823}13 — 0.37224824)14 — 0.245Z34834y4
—0.385z43843y3 + 0.4253853y3 + 0.6264864 4 + 0.37w2g2 + 0.245w3g3 + 0.385w44q4

—0.4wsq5 — 0.6wgqe = 1.7863

—0.14y; + 0.409y, — 0.817y3 — 0.014y4 — 0.455z53653y3 + 0.287234634y4 — 0.28w3q3 4+ 0.455w5q5 = —4.3212 2)
0.041y; + 0.026y3 — 0.799y4 — 0.405z64664y4 + 0.26243843y3 — 0.26w4q4 + 0.405weqge = —4.5122

boundsony;, j=1,2,3
In(4.9) > y; > In(6.0)
In(192) > y, > In(234)
In(2176) > y3 > In(2660)
boundson P;, [=1,...,6
In(PF) > P, > In(P")
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where wy(! = 1, ..., 6) and {z13, 214, 221, 222, 223, 224, 234, 234,
743, 253, Z64 } are binary variables(1 or 0), y;(G=1, ..., 4) and ¢;
(I=1,...,6)are continuous variables; L represents lower bound,
U represents upper bound.

Note that Hatzimanikatis et al. (1996) further implemented
linearization transformation techniques on the bilinear terms (z;;,
wy, q; and y;) in Eq. (2) to solve this problem as a linear pro-
gramming problem. After MINLP problem is transformed into
an MILP problem, 16 variables and 64 constraints were added.
In this work, genetic algorithm is used to solve this MINLP
problem without any treatment of bilinear terms. Therefore, no
additional variables and constraints are required, i.e., Eq. (2) is
directly solved.

As indicated above, the objective of this work is to find
all qualified local optima of Eq. (2) such that y4 > ymin. The
method is introduced in the next section. It should be noted that
the result derived here is not limited to S-system expression of
metabolic pathways since the solution method is general for all
MINLP’s.

2.2. The basic genetic algorithm

In genetic algorithm theory (see, e.g., Gen and Chang,
2000; Vose, 1999), five basic operators should be consid-
ered in genetic algorithm: coding, fitness evaluation, selection,
crossover, and mutation. Selection focusing on the best indi-
viduals will make genetic search go to narrow regions quickly,
but the genetic search may be trapped on local optimal or
to be terminated prematurely. Wild search is suggested at
the beginning of a genetic search, and local search is sug-
gested at the end of the genetic search. One of the linear
crossover approaches—Intermediate recombination is adopted
in this study. Mutation plays an important role in exploring
solution space especially when genetic operation is trapped at
local optima. A novel mutation approach is presented in the next
section.

3. Information guided genetic algorithm

The basic idea of the proposed approach — information guided
genetic algorithm (IGA) — is to detect the pre-maturity (i.e. the
individuals of each generation is very close to each other) of
the algorithm. Once the pre-maturity happens, an information
guided mutation is performed. We also propose to implement a
modified penalty function and local search for these particular
problems as described below. Cluster analysis is proposed to
discover the qualified local optima of the problem after imple-
mentation of IGA.

3.1. The pre-maturity detector

The detector of probable pre-maturity is introduced for
detecting the situation of potential pre-maturity. In this work,
we implement a premature detector D that is the sum of the dis-
tance of all individuals in each population. Suppose, x;; is the

Jjth variable of the ith individual of the population:

D=Z Z |x,-,j—x,1,j| (3)

While D ~ 0 means probable premature situation occurs and all
the individuals are the similar. In practice, it is necessary to set
a threshold Dy such that D > Dy, otherwise information entropy
guided mutation be will implemented to get ride of premature
situation.

3.2. Information (IF) entropy mutation

Genetic operation may trap on local optima when probable
pre-maturity happens. In order to get rid of probable premature,
we introduce information entropy to refresh the probable pre-
mature population. According to Shannon’s definition (1948),
the information entropy of the set X is

E(X) ==Y p(x)n p(x) )

xeX

where p(x) is the probability of the event x occurring. Infor-
mation entropy is a measure of how random a variable is
distributed, and can be implemented to measure the diversity
of the sampled data-set distributed in the solution space. The
higher information entropy of a variable means the more diverse
of the variable distributed in the solution space. The information
guided mutation approach calculates the information entropy
of each variable in MINLP. Variables have lowest information
entropy are selected to perform information guided mutation to
increase their information entropy. Yeh and Jang (2006) have
discussed how to select the variables to be mutated. And the
elements of new individuals will be generated by assigning ran-
dom values in the range of the solution space of the selected
variables.

3.3. Penalty function

Crossover and mutation may generate infeasible offspring
during constrained optimization. Most of genetic algorithms
apply penalty term to the original objective function, which
makes infeasible solutions undesirable. The penalty function
proposed by Barbosa and Lemonge (2004) is adopted and
revised to handle infeasible solution.

3.4. Local search

Ombuki and Ventresca (2004) mentioned local search dur-
ing mutation would accelerate convergent speed, but extend the
computed time. A trade-off between convergent speed and com-
putation time is necessary. In our study, local search is performed
periodically after several generations, and only discrete variables
are considered in local search to stress the influence in regulatory
modification.
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Fig. 2. The algorithm flowchart.

3.5. Clustering analysis for qualified local optima

Let m acceptable original solutions are selected to construct
clusters. Euclidean distances between pairs of solutions are esti-
mated for establishing a full-connected network, i.e., m(m — 1)/2
linkages are generated in the network. The estimated distances
are used to determine the proximity of solutions of each other.

Objective function value
[}

7F L il
1 P e GA
ol _{,—r ********** GA+IF i
‘l — — — GA+Local
L_: — IGA

1 1 1 1 1
0 500 1000 1500 2000 2500
Number of generation

Fig. 3. Comparisons of the performance four different GA approaches.

The nearest neighbours of solutions are grouped into binary clus-
ters, and the newly formed clusters are linked to each other
or to other solutions to generate bigger clusters until all the
solutions in the original solution set are linked together in a
hierarchical tree. If m, is the number of solutions in cluster r,
my is the number of solutions in cluster s, and x,; is the ith
solution in cluster r, the definition of nearest neighbours is as
follows:

d(r, s)=min(d(x;,;, X5, j)),

ie(l,....m), je(l,....,my)

®

The m — 1 nearest neighbours, with smallest distance between
solutions in clusters, are selected to create a hierarchical clus-
tering tree.

3.6. The algorithm

The overall flowchart is showed in Fig. 2. When pre-
maturity happens, the information guided mutation scheme is
performed. Local search will be performed under a proper
probability after reinsertion. After the information guided
genetic algorithm is performed, the qualified solutions are
recorded. Clustering analysis is used on several batches of the
records.
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Table 1

Comparison of the statistics of four different GA’s for the regulatory metabolic reaction

GA GA+IF GA +local IGA (GA +1F +local)
Average 8.9284 10.684 10.375 10.951
STD 3.4368 0.46561 1.3125 0.32403
Function call 67359 67358 79594 78670

4. Results

4.1. Local/global optima of the production of XMP and
GMP

Fig. 3 gives the histories of the objective function value of
Eq. (2) as a function of generation number based on the aver-
age of 50 simulation runs. As shown in Fig. 3, the performance
of IGA is superior to other GA’s. The comparison of the statis-
tics of all four approaches is shown in Table 1. Compared with
traditional GA, traditional GA +information guided mutation
only and traditional GA +local search only, the proposed method
(IGA) implement the slightly higher average number of func-
tion calls per run, the statistics of the objective function values
are much superior to other GA’s. In these four cases, maximum
generation number is set to be 2600, local search is performed
in every 400 generations, and the population size is set to be
14. The premature detector parameter D is set to 1. As shown
in Fig. 3, it is obvious that by including information entropy
and/or local search, the performance of GA can be drastically
improved.

After 50 IGA batches, 463 feasible solutions are survived
in the solution set. Among them we selected 84 high score
solutions, which satisfy the following conditions: (1) g5<0;
(2) g6<0; (3) ga<10.8, i.e. x4 >49021. The integer variables
wil =1,...,6),{213,214, 221,222, 223, 224 234 243, 253, Z64 } and
the continuous variables g; (I=1, . . ., 6) were used for clustering
analysis. The continuous variables were normalized and mul-
tiplied with w; before clustering analysis. According to the 16
binary and the 6 continuous parameters, we computed Euclidean
distance between these solutions and created the hierarchical
clustering tree. The dendrogram graph is shown in Fig. 4.
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Fig. 4. The dendrogram graph.

As shown in Fig. 4, the level of Euclidean’s distance is set
equal to 1 for simplicity. In this case, only five clusters can
be identified from the clustering tree. Solutions in the same
cluster have the same binary variables. That means the solu-
tions included in the same clusters are in the same regulatory
architecture and same type of enzyme respectively. Of course,
it is possible to analyze the solution set using lower level of
Euclidean’s distance as shown in Fig. 4, but it is not tested in
this work.

5. Discussion

Table 2 compares the solutions of the above five cluster cen-
tres with the original solution obtained by Hatzimanikatis et al.
(1996). The regulatory architectures of all cluster centres are
demonstrated in Figs. 5-9 respectively. P1+ and P>+ are univer-
sally required for all the solutions. P3— and Ps— are less than
the reference enzyme level in original solution, solution #3 and
solution #5. The two inhibitory loops (z13 and z53) also appear in
all solutions. Further comparison between the solutions obtained
in this work with the original solution will help in elucidating
the usefulness of this method. As shown in Fig. 5 and Table 2,
solution #1 has the same regulatory architecture with the orig-
inal one, but the enzyme activity changes of P3, P5 and P¢ are

P+
-~

-—
—

N\
KB

“

Fig. 5. The regulatory architecture of solution #1.



Table 2

The values of variables in original solution and IGA solutions #1-5

Node w; q (I=1,...,6), g, +w; x g;=In(Pl), g, =In(100) =4.605 {213, 214, 221, 222, 223, 224, 234, 43, 253 Z64 V4
Original solution (Hatzimanikatis et al., 1996) 111111 1.609 1.609 —0.363 1.609 —0.435 1.251 0101110001 55015.6
Solution #1 (t=21) 110100 1.472 1.291 — 0.420 — — 0101110001 52575
Solution #2 (t=7) 110100 1.126 1.473 - 0.464 - - 0100110001 49811
Solution #3 (t=13) 111010 1.231 1.609 —1.609 — —0.235 — 0101111001 65121
Solution #4 (t=15) 110001 1.609 1.609 - - - 0.292 0111110101 56613
Solution #5 (t=12) 111011 1.534 1.607 —0.455 — —0.202 0.651 0101110101 69633
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Fig. 8. The regulatory architecture of solution #4.

ulatory loops. According to the common sense of metabolic
engineering, it is very important to achieve an improvement
with less modification of regulatory loop. Figs. 7-9 demon-
strate the regulatory structures of solution #3, #4 and #5. It
should be noted that the solution #3, #4 and #5 result higher
concentration of Xy than original solution, but they need one
more modification on the regulatory loops. Notably, all of the

b i e, ¢

N\

X3

“

Fig. 9. The regulatory architecture of solution #5.

five solutions need less enzyme level changes than the original
solution.

In solution #2, the inhibit loop (z22) is kept. z2> will inhibit
the metabolic path from X to X, That will take a negative effect
on increasing X4. The differences between solution #2 and #4
are the existence of P4, Pg, 221, 222 and z43. In solution #2, the
positive effect Pg for increasing Xy is removed. So the objec-
tive function value in solution #2 is slightly lower than that in
solution 4.

Comparing solution #4 with the original solution, the acti-
vated loop (z21), the inhibited loop (z43) and the three enzymes
(P3, P4 and Ps) are removed. With this simpler structure, solu-
tion #4 still has superior result than the original one. Comparing
solution #4 with solution #3 and #5, the activated loop (z21)
and enzymes (P3— and Ps—) are removed in the former. The
activated loop will help the metabolic path from X; to X». The
metabolic path of X; to X3 and X; to X4 are competitive to each
other. While the concentration of X3 is increased, the concen-
tration of X4 will decrease. Decreasing the amount of Ps may
lead a decrease of metabolic flux from X, to X3, therefore the
concentration of X4 may be increased. However, it is clear that
the local optima at # = 12 (cluster center #5) and 13(cluster center
#3) give the higher yields (X4 =69633 and X4 =65121 respec-
tively) compared with other cases. Notably, the original yield by
Hatzimanikatis et al. (1996) was X4 =55015.6.

6. Conclusion

Solution of optimal metabolic regulatory network problems
can be formulated into a mixed integer nonlinear programming
problem (MINLP). In this work, genetic algorithm is imple-
mented to solve this MINLP problem. The information entropy
and local search method are implemented to improve these
solution approaches for MINLP problem. Unlike deterministic
optimization, the novel approach takes advantage of stochastic
optimization without further variable transformation. Further-
more, clustering analysis is implemented to allocate physically
meaningful local optima. The example taken in this work is the
Production of XMP and GMP. The solutions make sense by
comparing to previous results. Useful local optima are discov-
ered after clustering analysis. The results show that this approach
is valid and efficient.
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