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physically meaningful source signals are most likely oblique 
(Thurstone, 1947; Browne, 2001). In addition, SVD and ICA as-
sume that the hidden network topology is fully connected, and thus 
every source signal could contribute to every output. This is not an 
appropriate assumption for systems such as transcriptional regula-
tion where it is accepted that transcription networks are generally 
sparse. Exploratory Factor Analysis somewhat alleviates these 
issues by searching for a rotation of a factorization that maximizes 
a user-specified sparsity criterion, under the guidelines that the 
final source signals be orthogonal or oblique (also user-specified) 
(Browne, 2001). However, EFA has had difficulty with data where 
the complexity of the network exceeds that of maximal sparsity 
(one connection per output to the source layer) (Browne, 2001). 
The SSM of Beal et al. 2005 also focuses on network simplicity, 
but approaches the problem from a probabilistic perspective. Due 
to the large degree of data replication required by this method, and 
the existence of degeneracy in the deduced source signals (same 
network, different source signals/hidden variables), it is not of the 
same class as SVD, ICA, and EFA. With these issues in mind we 
sought to develop an exploratory technique based on structural 
network simplicity that requires a minimal amount of user speci-
fied information and can deduce true networks that exceed maxi-
mal sparsity. We have based our method on principles developed 
in (Brynildsen et al., 2006) and (Liao et al., 2003), and termed it 
Network Component Mapping (NCM). 

By utilizing the concepts of network versatility, nonversatility, 
and NCA we have created a method that assumes nothing about 
the nature of the source signals beyond linear independency, con-
siders the network connectivity a key feature of analysis, and only 
requires users to specify a threshold for edge significance that can 
easily be varied to obtain an idea of the solution landscape. Net-
work Component Mapping searches for the sparsest network struc-
ture capable of explaining the data under a given noise threshold. 
We demonstrate the utility of NCM by analyzing UV-Vis absorb-
ance spectra from metabolite mixtures and gene expression data 
from Saccharomyces cerevisiae. Analysis of UV-Vis spectra re-
quires knowledge of pure component spectra for identification and 
quantification. However, for some compounds chemical standards 
are difficult to obtain due to purification, stability, or other issues. 
Analysis of mixtures of these types of compounds has proven par-
ticularly challenging. Here we effectively identified the mixing 
network and source spectra in systems with and without the pres-
ence of chemical standards, showcasing that standards are unnec-
essary when analyzing UV-Vis spectra with NCM. For gene ex-
pression analysis we realized that verification of the deduced 
source signals and transcription networks is difficult. To validate 
the performance of NCM on gene expression data we chose to 
compare the deduced transcription network with that obtained from 
ChIP-chip binding assays (Lee et al., 2002; Harbison et al., 2004), 
a technique that has been employed previously (Qian et al., 2003). 
However, transcription factor binding is environmentally depend-
ent and binding does not always confer regulation (Gao et al., 
2004; Harbison et al., 2004; Boulesteix and Strimmer, 2005; Papp 
and Oliver, 2005; Brynildsen et al., 2006). With this in mind the 

Gibbs sampler of (Brynildsen et al., 2006) was employed to screen 
for genes with consistent expression and ChIP-chip derived con-
nectivity data. Genes deemed consistent by the Gibbs sampler, 
possessed a ChIP-chip derived transcription network capable of 
explaining their expression. The expression of these genes was 
analyzed with NCM to demonstrate that NCM can deduce experi-
mentally derived (ChIP-chip) transcription networks from expres-
sion data.  

Lastly, it is important to note that for noisy data NCM deduces 
the sparsest network that can explain the data, and if partial net-
work knowledge is available it can be incorporated into NCM such 
that the deduction is the sparsest network consistent with prior 
information. 

2 METHODS 
2.1 Background 
2.1.1 Bipartite Networks 
Network Component Mapping deals with uncovering hidden network con-
nectivity and source signals from the output of bipartite networks. A bipar-
tite network represents an output ( )ie t  by the linear mixing of sources, 

( )jp t , through a mixing rule described by: 
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where ija  are the connectivity strengths.  The mixing rule can be written in 
matrix form: 
 
 E = AP  (2) 
 
where E  is the output data ( NxM ), A  is the matrix of network connec-
tivity strengths ( NxL ), and P  is the collection of source signals ( LxM ). 
Bipartite networks can further be generalized by considering only the con-
nectivity pattern of matrix A : 
 
 ( ){ }| 0,  for a given set of  ,NxL

ija i j= ∈ =AZ A R  (3) 
 
where the values of the nonzero ija  are left unconstrained and can take on 
any value, positive, negative, or zero. For the purpose of this paper, net-
works with varying connectivity strengths but the same connectivity pat-
tern, AZ , will be discussed identically. 
 
2.1.2 Versatility and NCA-compliance 
Network Component Mapping utilizes the concepts of bipartite network 
versatility and NCA-compliance (Liao et al., 2003; Brynildsen et al., 
2006).  Versatility is a property solely defined by the network topology. A 
method to check if a network is versatile can be found in Brynildsen et al.  
2006. Consider a network with N  outputs and L  sources. If the network 
is versatile it can explain any data within L . In other words, it can de-
scribe any dataset with  N  outputs and L≤  non-zero singular values 
perfectly, regardless of the generating network. If there is noise and there 
are L≥  non-zero singular values, a versatile network can describe the best 
rank L  approximation of the data.  Due to this ability, all versatile net-
works of the same size are equivalent in terms of their ability to describe 
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data. Versatile networks have a range of edge densities, with fully con-
nected networks existing on one side of the spectrum and minimal versatile 
networks on the other. Minimal versatile networks are those topologies that 
will no longer be versatile if a single edge is lost. These networks are used 
to initialize NCM, and the procedure will be described in the next section. 
It is important to note that if the underlying network responsible for a data-
set is versatile it cannot be deduced from the output data. This results from 
the ability of all versatile networks to explain any data within L . How-
ever, since versatile networks are fairly dense (see Brynildsen et al. 2006 
for details) the majority of networks are non-versatile. Indeed, transcription 
networks are extremely sparse, and thus certainly non-versatile. This makes 
transcription networks good candidates for deduction from gene expression 
data.  
 NCA-compliance deals with the uniqueness of a particular solution. A 
series of criteria define NCA-compliance, and these can be found in Liao et 
al. 2003. The criteria involve both network topological constraints on A , 
and rank requirements on  A  and  P . These criteria are used in NCM to 
ensure that every step of the algorithm provides a unique solution up to a 
scaling factor (see Liao et al. 2003 for details).  We recognize that the true 
underlying network for a given dataset may not be NCA-compliant, how-
ever, without requiring our solution to be NCA-compliant, another more 
artificial constraint such as orthogonality or statistical independence would 
need to be used to obtain uniqueness.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1: Schematic of NCM algorithm   
 
2.2 Network Component Mapping Overview 

Network Component Mapping is based upon the principles of network 
versatility and nonversatility described in (Brynildsen et al., 2006). The 
technique follows the flow diagram shown in Figure 1. The purpose of 
NCM is to deduce the hidden network structure and source signals respon-
sible for a given set of data. This is typically an ill-posed problem since the 
factorization in Eq. (2) is non-unique. Any number of invertible LxL  
matrices,  Y , could be used to transform the factorization in Eq. (2): 
 
 ˆ ˆ-1E = AYY P = AP  (4) 
 
where Â  does not have to equal A or be related to it by a scalar , and P̂  
does not have to equal P  or be related to it by a scalar.  Therefore, con-
straints need to be placed on the system to identify a unique solution. The 
constraint NCM uses involves network simplicity. Under the premise that 
the sparsest network is most likely the true network, NCM searches for the 
sparsest NCA-compliant topology capable of describing the data given a 
certain noise level. The assumption that the sparsest network is most likely 
the true network has been used previously (Yeung et al., 2002), and justifi-
cation comes from the empirical principle of parsimony that states the 
number of parameters in a model should not increase unless a significant 
improvement to fit is observed (Akaike, 1987). In practice this translates 
into, given a number of models that all fit the data similarly the one chosen 
to represent the system should be the one with the least number of parame-
ters. In our case, this would be the sparsest network. 
 
2.3 Preprocessing 
The algorithm begins by prompting the user to input the data, and if known 
the number of sources/components. If the number of sources is unknown a 
preprocessing step is initiated which utilizes SVD to determine how many 
sources there are by the number of significant singular values. In addition, 
model selection criteria such as Akaike Information Criterion (AIC), 
Schwarz/Bayesian Information Criterion (SIC), and Risk Inflation Criterion 
(RIC) could be used to determine the number of factors (Wu et al., 2004). 
After the number of sources has been determined, L , the algorithm begins 
by generating a series of initial guess networks, igZ ( )NxL , formulated at 
random but required to be both versatile and NCA-compliant. We require 

igZ  to be versatile so that we do not introduce any artificial bias into our 
analysis (Brynildsen et al., 2006), and we require igZ  to be NCA-
complaint because we desire a unique solution at every stage of our algo-
rithm (Liao et al., 2003). The only networks that are both versatile and 
NCA-compliant are those that contain the minimal versatile connectivity 
(Brynildsen et al., 2006).  
 The minimal versatile connectivity defines a class of networks where all 
members contain ( 1)L L −  missing edges, although at different positions, 
and are versatile. There are many choices of network that contain the 
minimal versatile connectivity that can be used for igZ . Since the true 
network, trZ , is unknown and cannot be deduced unless a ⊂ig trZ Z  (the 
zero positions in igZ  are a subset of those in trZ ), a series of igZ  is used 
to ensure that in at least one instance ⊂ig trZ Z .  
 
2.4 Initial Mapping 
Once a igZ  has been randomly selected it enters an initial mapping proce-
dure. The procedure is based upon the relationship between NCA and SVD: 
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 =TE = USV AP  (5) 
 
where E  is the output data ( NxM ), A  is the network ( NxL ) defined by 
the zero pattern AZ , P  is the collection of source signals ( LxM ), S  is 
the diagonal matrix ( LxL ) of the first L  singular values of E  oriented in 
decreasing order, and U  ( NxL ) and V  ( MxL ) are unitary matrices of 
the  right and left singular vectors of the elements in S . The component 
matrices of the two decompositions can be related as follows: 
 
 A = UX  (6) 
 
 -1 TP = X SV  (7) 
 
where X ( )LxL  is an invertible matrix that relates U  to A  and TSV  to 
P . For a versatile, NCA-compliant network, an invertible X  can found to 
satisfy Eq. (6) and (7) for any data, E . The first step in the initial mapping 
procedure is to do just that. 
 We recognize that X  can be calculated from either Eq. (6) or (7). Since 
nothing is known about the values of P , and A  is characterized by AZ  
(zero locations are known) we use Eq. (6) to calculate X . We transform 
Eq. (6) into:  
 
 
 c c cA = U X  (8) 

  
   
where 

icA  is the thi column of A , and 
icX  is the thi column of X . By 

collecting all of the zeros in cA  we can obtain the workable equation: 
 
 
 r cc0 = U X  (9) 
 
 
where r

icU  is the reduced form of U  which corresponds to the zero en-
tries in the thi column of A .  

We know that the initial mapping procedure uses igZ  for AZ , which 
means there will be ( 1)L L −  zeros in A  and in particular 1L −  zeros per 

icA  (Brynildsen et al., 2006).  Since every 
icX  has L  unknowns and 

every 
icA  has 1L −  zeros, the null space for all r

icU  will exist and non-
trivial solutions for all 

icX  will exist. In addition, since most data has 
some degree of noise, the nullity of r

icU  will be 1 and all solutions of 
icX  

will be related to one another by a scaling factor. Therefore, a null space 
calculation can be used to determine X  uniquely up to a scaling factor that 
works per column of X . Since A  is NCA-compliant this does not present 
a problem because the columns of A  are uniquely determined up to a 
scaling factor that works per column of A  (Liao et al., 2003). 

Once X  and A  have been determined a trimming procedure is per-
formed (Supplementary Information section 2.3.1). Trimming of an edge 
occurs when its source signal contribution is less than a user-specified 
threshold. A variety of model selection criteria including AIC, SIC, RIC, 
and cross validation (CV) were tested against the performance of the 
threshold parameter. However, only threshold trimming proved effective 
with our data (see Supplemental Information section 2.3.2).    

Not all initial mappings yield a trimmed network. If a particular igZ  
cannot elicit any non-versatile data signatures, the initial mapping will 
simply yield igZ  as a result. This is an issue because in versatile networks 
the network connectivity does not carry any physical significance, since the 
edges may be rearranged in many different ways without impacting the 
system (Brynildsen et al., 2006). Therefore to continue onto the next stage 
of the algorithm the following two criteria must be met after trimming: 1) 
every source/component (column of igZ ) has had at least one edge from it 
trimmed, resulting in every source being non-versatile (see Supplemental 
Information section 4.2 for details) 2) the resultant network ( A ) and 
source signal matrix ( P ) are NCA-compliant. We require every source to 
be non-versatile so that the position of zeros within every column would 
have significance, and we require A  and P  to be NCA-complaint to 
ensure that the solution is unique. If these two criteria are not met, the 
algorithm chooses another igZ  and the initial mapping procedure is con-
ducted again (Note: due to complexities in gene expression data necessitat-
ing analysis of small datasets combined with the presence of high noise 
levels, the first of these criteria was relaxed to the uncovering of a single 
zero for the whole network instead of per column. The criteria may also be 
neglected with the possible cost of a larger number of iterations necessary 
for deduction). 

 
2.5 Fine Mapping 
Although the initial mapping procedure identifies portions of the network 
map that are unnecessary, it may not identify all of the non-essential sec-
tions. Hence, the newly trimmed network must enter a fine mapping proce-
dure which will further probe the data for inherent constraints. The fine 
mapping procedure has three components, which are path selection, recur-
sive algorithm, and ranking.   

The fine mapping procedure does not utilize a null space calculation as 
the initial mapping procedure does. In theory, if the data was devoid of 
noise and error a null space calculation could be utilized in the fine map-
ping procedure. Recall that a versatile network could satisfy Eq. (6) and (7) 
for any data. This includes any noise present (see Supplemental Informa-
tion section 4.1).  Nonversatile networks, on the other hand, can only sat-
isfy Eq. (6) and (7) for data that contain their signatures. Therefore, a null 
space calculation could be used with non-versatile networks if the appro-
priate signatures are present in the data. However, any addition of noise to 
the data will obscure those signatures, resulting in the destruction of the 
null space of the columns of X . This complication has been noted previ-
ously (Brynildsen et al., 2006), and leads to the necessity of path selection.  

The path selection process allows calculation of the nonzero entries of 
A  without the use of a null space calculation. By taking advantage of the 
scaling rules present in NCA, we are able to select at random a nonzero 
element from every column of A  and set that to 1, transforming Eq. (9):  

 
 

 r
r = ccc U X  (10)

  
 
where r

ic  is the reduced form of the thi column of A , and r
icU  is the 

reduced form of U  which corresponds to the thi column of A . The re-
duced form, r

ic , is the collection of zeros and a single nonzero entry from 
the thi column of A , while the reduced form, r

icU , are those rows of U  
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associated with the entries of  r
ic  through Eq. (8). The actual selection of 

non-zero entries to place in rc  is random and is termed path selection. Path 
selection provides both a nontrivial solution for X , and a set of perma-
nently present edges. Since these edges are selected at random and could 
possibly be absent from trZ , the path selection process must be performed 
multiple times for every network that enters the fine mapping procedure.  

While the path selection process will provide a non-trivial solution for 
X , it will not uncover any additional behavioral constraints. To detect any 
further non-versatile signatures the network is passed to the recursive algo-
rithm. The recursive algorithm systematically probes for non-versatile 
signatures by deleting network edges one by one with subsequent evalua-
tion by Eq.s (6), (7), and (10), after which another trimming procedure is 
conducted. Details of the recursive algorithm can be found in the Supple-
mentary Information section 2.2. After completion of the recursive algo-
rithm a single network from every path selection is provided to the ranking 
procedure. 

The ranking procedure consists of two tiers. The first tier ranks the net-
works by the number of remaining edges. The network with the least num-
ber of edges is chosen as the NCM output, NCMZ , unless there is a tie. If 
there are multiple networks with the same edge density, the residual error, 
as measured by the Frobenius norm, is used as a tiebreaker. Hence, the 
most sparse network with the smallest residual error is then used to deter-
mine the complimentary source signals, and both are reported as the result 
from that particular igZ . 

 
2.6 Final Ranking 
The final ranking procedure is identical to the ranking procedure of the fine 
mapping algorithm. The only exception is that the final ranking procedure 
is being used to discern trZ  from a series of trimmed networks from dif-
ferent igZ ’s, while the fine mapping ranking procedure attempts to discern 

trZ  from networks created from different paths from the same igZ . 
 
2.7 Random Processes 
NCM relies upon two random processes. These are the initial selection of 

igZ  and the path selection process. To overcome errors instituted by the 
path selection process (edges selected are not present in trZ ), the fine 
mapping procedure is performed multiple times for every igZ  (50 here for 
both spectrum and expression data). This provides a sampling of nonzero 
entry combinations empirically shown to allow identification of trZ . 
However, the path selection number can easily be changed, and exhibits a 
negligible effect on computation time compared to the selection of igZ . 
For NCM to converge to trZ  the following must be met: 1) ⊂ig trZ Z   
and 2) there must be an NCA-compliant path from igZ to trZ . If these 
conditions do not exist in any of the iterations of NCM trZ  will not be 
obtained. These conditions are both determined by igZ . The simplest 
solution is to test a large number of igZ , so confidence is high that the 
conditions had been met. The number of  igZ  that should be tested to 
ensure ⊂ig trZ Z  is dependent on a number of factors, and has been dis-
cussed in the Supplemental Information section 2.1. However, for very 
dense networks the number of iterations necessary to obtain a proper selec-
tion of igZ  randomly could be substantial. Another solution exists if prior 
knowledge of the network is available. Such knowledge can then be incor-
porated into igZ  to expedite computation. Either way, in general NCM 
converges to trZ  more quickly for sparse networks due to the ease with 

which a proper igZ  may randomly be obtained, and that incorporation of a 
priori system knowledge into the method may decrease computation time. 

3 RESULTS 
3.1 Spectrum Data 
To demonstrate the utility of NCM we constructed two chemical 
spectra networks with 5 chemical components: creatinine, hy-
poxanthine, shikimic acid, tryptophan and tyrosine. This was done 
by creating a series of mixtures and varying the concentrations of 
particular components in different mixtures.  In this framework the 
5 pure components populate the source layer, while each mixture 
represents an output in the output layer. An edge is drawn between 
an output and source if for that particular mixture the concentration 
of the source is >0. The first network constructed contained 35 
mixtures (outputs) where each output connected to ≥ 2 sources 
(pure component spectra absent). The second network constructed 
contained 50 mixtures where each output connected to  ≥ 1 source 
(pure component spectra present). Absorbance of the output spec-
tra were measured from 205-354nm, and our goal was to deduce 
the network and source signals solely from the output spectra.  For 
comparative purposes the performances of SVD, ICA, orthogonal 
EFA, and oblique EFA were also evaluated in addition to NCM.  

The goal of analyzing the first network was to simply demon-
strate the utility of NCM in spectrum analysis and show that NCM 
does not require chemical standards to successfully deduce the 
hidden network and source signals. The first system consists of 26 
outputs that are two component mixes, and 9 outputs that are 3 
component mixes. The network can be visualized in Figure2A, and 
a plot of the normalized singular values of the spectra is presented 
in Figure 3A. It is obvious from this plot that there are 5 significant 
singular values, and thus 5 components were inferred as expected. 
For the spectrum data AIC, SIC, and RIC all identified more 
sources than were present, and thus singular values have been 
adopted in this work to determine the number of sources.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A

B

Fig.2: A) Chemical Network 1 (35 mixtures), B) Chemical Network 2 (50 mixtures), 
blue nodes indicate sources, while red nodes indicate outputs  
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After using NCM, the true network, trZ , was determined with a 
frequency of 1/44 when sampled over 1000 iterations, which 
means that on average 44 igZ ’s passed to fine mapping were required 
to obtain trZ .The correlation coefficient between the real pure-
component spectra and the NCM approximations was excellent, 
with a median of .9998 for the 5 components when compared to 
triple repeat pure component spectrum data. The difference be-
tween the concentrations calculated from analysis with pure com-
ponent spectra and that obtained from the NCM deduction was 
maximally 11.1%, with a mean of 1.4%. This example demon-
strates the utility of investigating UV spectra with NCM when pure 
component spectra are not available. This network was also ana-
lyzed with SVD, ICA, orthogonal varimax EFA, and oblique pro-
max EFA (see Supplementary Information section 3.1-3). The 
results of these analyses compared to NCM can be found in Table 
1A. Concentrations were not calculated since the networks de-
duced by the other methods were inaccurate. 

 
 
 

 
 

 
 
 

 
 

 
Table 1: Correlation coefficients (CC) and network accuracy (NA) for 
analysis of A) System 1, B) System 2 spectrum data by different methods 
(CC, NA as discussed in Supplemental Information section 3.2-3) 
 

The network for the second system contained the first system 
along with 15 pure component spectra (3 from each component). 
The network can be seen in Figure2B, and a plot of the normalized 
singular values is presented in Figure 3B. It is obvious from this 
plot that there are 5 significant singular values, and thus 5 compo-
nents. After using NCM, trZ  was realized with a frequency of 
1/11 when sampled over 1000 iterations. The correlation coeffi-
cient between the real pure component spectra and the approxi-
mated pure component spectra was minimally .9999 and maxi-
mally 1.000, with a median of .9999 for the 5 components when 
compared to triple repeat pure component spectrum data. The con 
centrations when compared against an analysis performed with the 

pure component spectra were maximally 6.0% different, with a 
mean of 0.7%. This example demonstrates that as the sparsity of 

trZ  increases, even while the size of the system increases, the 
number of iterations necessary to obtain the true answer decreases. 
This can be attributed to the higher likelihood of ⊂ig trZ Z . In 
addition, this network was analyzed with SVD, ICA, orthogonal 
varimax EFA, and oblique promax EFA. The results of these 
analyses compared to NCM can be found in Table 1B.  
 
3.2 Gene Expression Data 
To demonstrate the applicability of NCM for transcriptional regu-
lation transcription networks were deduced from gene expression 
data. Transcription networks were verified with ChIP-chip derived 
network connectivity screened for accuracy by the Gibbs sampler 
developed in (Brynildsen et al., 2006). The Gibbs sampler was a 
necessary step due to the presence of experimental noise, environ-
mental dependence in regulator binding, and uncorrelation between 
binding and regulation. Transcription factor activities derived from 
NCM were not verified with an outside source due to their un-
availability. The majority of literature concerned with TFAs de-
duces them from expression data, resulting in activities subject to 
the assumptions and biases of a particular method or model. To 
avoid this artificial comparison we assumed that if NCM deduced 
the proper transcription networks, appropriate TFAs would likely 
result. This is evidenced in the results obtained for the chemical 
spectra networks. 

 
Gene ID Stress  Regulator(s)  Gene ID Stress  Regulator(s) 

YAL061W Zinc SOK2  YLL067C Zinc YAP5 

YBR115C Zinc GCN4  YLR120C Zinc AFT2 

YCL048W Zinc SUM1  YLR299W DTT YAP7 

YCR075C DTT FKH1  YLR349W Zinc HSF1 

YDL198C Zinc GCN4, GLN3  YLR392C Zinc SMP1 

YDL204W DTT YAP7  YLR394W Zinc SMP1 

YDR403W Zinc SUM1  YLR461W Zinc AFT2 

YER052C Zinc GCN4  YMR053C Zinc PHO2 

YER139C DTT SWI6  YMR062C Zinc GCN4 

YGL138C Zinc SUM1  YMR149W DTT ROX1 

YGL261C Zinc AFT2  YNL141W Zinc GLN3 

YGR168C DTT MCM1,MGA1  YNL253W Zinc ZAP1 

YHR024C Zinc GCN4  YNL254C Zinc ZAP1 

YIL102C DTT ROX1  YNR076W Zinc AFT2 

YJL056C Zinc ZAP1  YOL161C Zinc AFT2 

YJL161W Zinc PHO2  YPL044C DTT MCM1 

YJL223C Zinc AFT2  YPL226W DTT FKH1 

YJR067C DTT GAT3  YPL273W Zinc GCN4 

YLL064C Zinc AFT2  YPR196W Zinc HSF1 

YLL066C Zinc YAP5  YPR197C DTT MGA1 

Table 2: NCM deduced transcription networks 
 

In Table 2 we present transcription networks deduced by NCM 
from gene expression data from Saccharomyces cerevisiae. Tran-
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scription factors were assigned to genes by aligning NCM-deduced 
networks with the corresponding ChIP-chip derived connectivities 
(see Supplemental Information section 3.1). For the networks pre-
sented, NCM deduced networks identical to those defined by 
ChIP-chip (see Supplemental Information section 1.2), therefore, 
each TF-gene interaction deduced by NCM was validated with 
ChIP-chip binding data. One network was deduced from expres-
sion data obtained during stress from zinc, while the other was 
deduced from data under reductive stress induced by DTT. An 
interesting feature to note is that NCM deduced combinatorial 
regulation in both zinc and DTT experiments. As a comparison 
PCA, ICA, orthogonal varimax EFA, and oblique varimax EFA 
were used to deduce transcription networks from the same expres-
sion data. The results of these analyses compared to NCM can be 
found in Table 3.  

There are two important features to note about the application of 
NCM to gene expression data. The first is that the number of ex-
periments (µ-arrays) to be analyzed limits the number of regulators 
a particular NCM can deduce. The second is that an excess of 
noise in expression data impacts the resolution with which NCM 
can deduce transcription networks. These aspects will be addressed 
in detail within the Discussion.  
 

 
Zinc Network  

Accuracy 
DTT Network  

Accuracy 
SVD 81% 71% 
ICA 80% 69% 

EFA (orth) 99% 96% 
EFA (obl) 98% 95% 

NCM 100% 100% 
Table 3: Comparison of network accuracy deduced by different methods  
referenced to ChIP-chip connectivity (see Supplemental Information sec-
tion 3.1 for details).  

4 DISCUSSION 
Here we have presented NCM, a technique that utilizes concepts 

from (Brynildsen et al., 2006), NCA, and SVD to reconstruct regu-
latory networks and source signals from the output of bipartite 
systems. Network Component Mapping searches for the sparsest 
network capable of explaining data given a certain noise threshold, 
under the premise that the sparsest network is most likely the true 
network. The ability of NCM to deduce hidden networks and 
source signals has been demonstrated with UV-Vis spectra and 
gene expression data. This ability was compared to that of other 
popular bipartite techniques. The performance of NCM was supe-
rior to that of other techniques. The extent to which this perform-
ance enhancement was dependent on the trimming procedure was 
explored for both spectrum and expression data. As described in 
Supplemental Information section 3.4, the performance of EFA 
becomes comparable to NCM if the true network is very sparse 
and a large trimming threshold is used. For a detailed discussion on 
the conceptual differences between EFA and NCM see Supple-
mental Information section 3.7. 

Network Component Mapping deduced all chemical networks 
exactly, and inferred source signals that were all exceptionally well 
correlated with pure component spectra. With expression data 
NCM was able to deduce transcription networks consistent with 
ChIP-chip derived connectivity. However, the natures of transcrip-
tion systems and µ-array data propose a challenge to NCM.  

Unlike chemical spectra where the number of wavelengths is of-
ten greater than the number of chemicals ( M L> ), in transcription 
systems it is not uncommon to have fewer experiments (µ-arrays) 
than acting transcription factors ( M L< ). Exploratory techniques 
such as NCM, SVD, ICA, and EFA, cannot deduce more regula-
tors than there are experiments (see Supplemental Information 
section 3.6). This is an issue when attempting to deduce transcrip-
tion networks with NCM. For one, transcription networks change 
with environment. This means that experiments in a single analysis 
should be closely related to ensure the degree of transcription net-
work variation is small. During our current analysis this translated 
into analyzing datasets with 10≤  experiments. Hence, the tran-
scription networks we could infer would have 10≤  regulators. To 
mitigate this situation, both experimental and computational ap-
proaches can be used. Experimentally, a larger number of µ-arrays 
could be performed at smaller time intervals or slightly varying 
conditions to ensure minimal network variation. Due to noise pre-
sent in µ-array data, data replicates could also be used. However, if 
experiments were being designed for use with exploratory bipartite 
techniques, data from separate conditions would be recommended 
over replicates. Ideally, the number of µ-arrays would exceed the 
number of factors thought active in a system. However, transcrip-
tional responses can involve large scale expression changes ef-
fected by a large number of transcription factors, yielding experi-
mental strategies extremely labor intensive. Under these circum-
stances computational strategies can be used to lower the number 
of necessary µ-arrays, both for future experiments and currently 
available data. One strategy that may be employed focuses on the 
isolation of sub-networks where M≤  transcription factors are 
known to function (Yang and Liao, 2005). After independent 
analysis of the sub-networks, results can be recombined to get a 
global view of the transcription system. Indeed this strategy has 
worked previously, and has been adopted here (see Supplementary 
Information section 1.3).  

Conceivably, after employing the strategy of Yang and Liao, 
2005 NCM should be able to infer most of the transcription system 
from expression data. However, the level of noise present in µ-
array data remained an issue. With excessive noise the network 
signatures embedded in data that are utilized by NCM become 
obscured. The Gibbs sampler was implemented to identify genes 
whose network connectivity was capable of generating their ex-
pression data despite the presence of noise and error. 

The Gibbs sampler identified genes with accurate expression 
and binding data. It did not process the data to remove noise or 
error, yet simply identified those genes with less error and noise in 
their expression and binding data. Thus genes identified by the 
Gibbs sampler as accurate would be the best candidates to work 
with NCM. However, NCM did not deduce ChIP-chip derived 
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connectivity for all those genes identified. Deduced connectivity 
that did not match ChIP-chip connectivity often erred on the side 
of more regulators per gene. This is indicative of increased noise 
levels, since deduced networks will tend toward versatility by mis-
taking noise for signal at higher levels. 

Despite these difficulties NCM successfully deduced transcrip-
tion networks consistent with ChIP-chip connectivity solely from 
gene expression data. This shows the potential NCM has for defin-
ing transcription networks. In particular, when connectivity data is 
unavailable or is available in a different environment NCM could 
be used to identify connectivity if expression data is comparatively 
clean. Network Component Mapping requires only expression data 
and a user-specified edge significance threshold, and assumes 
nothing beyond a log-linear transcription model and linear inde-
pendence of TFAs. In fact, even with noisy expression data NCM 
could be used on its own to infer the sparsest network at a given 
noise threshold, or it could be used in conjunction with partial 
network knowledge to infer the sparsest network consistent with 
prior information.  

However, no discussion about deducing transcription networks 
from gene expression is complete without mention of Bayesian 
Networks (BN). Bayesian Networks are a popular technique to 
deduce regulatory interactions from expression data (Friedman et 
al., 2000; Pe'er et al., 2002; Segal et al., 2003; Friedman, 2004). 
Using joint probability distributions within expression data acyclic 
regulatory maps are inferred. These regulatory maps are not con-
fined to be bipartite as the analyses discussed here are, but take on 
a nested tier structure that dictates when the expression of one gene 
is dependent on the expression of another gene. The dependent 
gene is interpreted as being regulated by the gene whose expres-
sion its expression is dependent on. While this strategy has had 
success discerning regulatory interactions from expression data its 
assumption of regulator activity correlating with transcript level 
could be troublesome, especially when post-translational modifica-
tions define activity and combinatorial regulation is present. In 
NCM, regulator activities are never assumed correlated with single 
transcript levels, but are deduced from all transcript levels present. 
Indeed in the first chemical network not a single output spectrum 
was representative of the constituent spectra, yet NCM deduced the 
source signals easily. When BNs were used to analyze spectrum 
data from the first chemical network the resulting regulatory map 
was excessively complex (see Supplemental Information section 
3.9 for details). This was most likely due to the absence of repre-
sentative constituent spectra, and the high degree of similarity 
between the constituent sources. When the activities of multiple 
regulators are highly related BNs could encounter problems, since 
the joint distribution may find everything interdependent. Complex 
maps deduced from these situations are difficult to interpret and 
could lead to improper inferences. On the other hand, NCM de-
duced connectivity was explicit and easily interpretable. 

Lastly, it is worth noting that the performance of NCM is ex-
pected to improve as technical advancements in the DNA µ-array 
technique become available, and further improvement to the algo-
rithm progresses. In this work the performance of four different 

model selection techniques (AIC, SIC, RIC, CV) and our threshold 
trimming procedure were investigated. While all model selection 
techniques performed poorly with spectrum data, Leave-One-Out 
cross validation (LOO-CV) showed promise for the analysis of µ-
array data (Supplemental Information section 2.3.2). However, 
LOO-CV is computationally intensive, especially as the number of 
data points increases.  In consideration that a trimming step is 
needed more than one thousand times per iteration of NCM for the 
relatively small networks of the current data, incorporation of 
LOO-CV at this time is infeasible. Currently, the approach for 
selection of a trimming threshold requires classification of data 
into one of two categories, clean or noisy. For data from sources 
known to yield relatively clean data (eg. spectrophotometer) we 
suggest a strict trimming threshold (initial mapping: 0.01, fine 
mapping: 0.05), while for data from sources known to produce 
noisy data (eg. DNA µ-array) we suggest a more relaxed trimming 
threshold (initial mapping: 0.02, fine mapping: 0.2-0.25). How-
ever, as demonstrated in the Supplemental Information section 3.4, 
NCM deduces networks that are highly accurate for a large range 
of thresholds (fine mapping, spectrum: 0.01-0.25, expression: 0.10-
0.35). This illustrates that NCM can produce highly accurate re-
sults without the use of an optimal trimming threshold. This is 
particularly attractive for situations when the organism is poorly 
characterized, or the response of an organism to a particular envi-
ronment is poorly understood. In addition, the threshold can easily 
be varied to obtain a comprehensive view of the solution land-
scape.  Ideally, a trimming procedure dependent on the data that is 
computationally feasible could be implemented in order to reduce 
the degree of user input. Also, even though NCM does not require 
additional information about the system to perform its analysis, 
prior information regarding the network topology can be incorpo-
rated.  
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