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Stochastic methods are widely used for the solution of optimization problems, because of the simplicities
involved in algebraic manipulation of each particular problem. In practice, the feasible region of an engineering
mixed-integer-nonlinear-programming (MINLP) problem is basically nonconvex and even rugged. Genetic
algorithms (GAs) usually suffer from prematurity problems and require many different runs from different
starting points, to avoid the trap of local minima. On the other hand, GAs may provide some possible local
minima that have physical meanings for the engineers in its solution results. In this work, a novel genetic
algorithmscalled a information-guided genetic algorithm (IGA)sis developed to solve the general MINLP
problems. This novel approach proposes the implementation of information theory to the mutation stage of
GAs to refresh the premature population. Moreover, the detection index of prematurity of the population is
based on the distances among the individuals. A local search is performed to improve the efficiency of this
approach in every defined period. In this work, no initial feasible point or any problem transformation is
required; thus, no additional variables and constraints are needed. On the other hand, in addition to the possible
global optimum, some more local optimal solutions that may be interesting to the engineer were also found.
Five examples, i.e., three multiproduct batch plant problems with different sizes, an optimization problem of
regulatory metabolic reaction network, and a three-level pump network optimization problem are solved using
this novel approach. The simulation results show that that the rate of convergence and discovery rate of the
global minimum are substantially improved from the traditional GA.

1. Introduction

Designs of chemical and biological systems are generally
mixed-integer nonlinear programming (MINLP) problems in-
volving both discrete and continuous variables. MINLP is widely
applied in many areas, from large scale designs1 to molecular
scale metabolic network design.2 A review article3 has shown
that the application of genetic algorithms (GAs) to MINLP is
very effective. The objective of this work is to derive a novel
stochastic MINLP solution approach that includes the basic GA
structure and an information-guided mutation stage.

The common characteristic of these MINLP problems is that
these problems are nonconvex and even rugged with many local
maxima/minima. The solution approaches for solving MINLP
can be roughly divided into two categories:4 deterministic
approaches and stochastic approaches. Various deterministic
algorithms have been published.5,6 One of typical deterministic
approach,R-BB,7 which is a very advanced extension of Branch
and Bound, overcomes this problem by implementing analytical
and local smoothing techniques. A textbook by Floudas and
Pardalos8 included many of these applications, and most of them
are interesting to industry. The other stream of global optimiza-
tion is the stochastic algorithms, for example, simulated
annealing (SA) and GAs. One of stochastic solutions to MINLP
is an extension of SA.4 On the other hand, Bjork and Nordman9

showed that the GA is very suitable to solve a large-scale heat
exchanger network. Note that the previously discussed two
different approaches have their different own values; for
example, a deterministic approach usually involves considerable
algebra and undeviating analysis to the problem itself, whereas

the evolutionary approach does not have this problem. On the
other hand, an evolutionary approach basically cannot guarantee
the global optimum of the problem, but some deterministic
approaches, such as mathematical programming, can provide
more theoretical insight of the problem.

GAs, as proposed by Holland,10 are search algorithms based
on the mechanics of natural selection and natural genetics. They
combined the survival of the best fit among string structures
with a structured, yet randomized, information exchange to form
search algorithms with some of the innovative flair of human
search. In every generation, a new set of artificial creation
(strings) is created, using bits and pieces of the best fit of the
old one; an occasional new point is tried for good measure.
While randomized, GA is not a simple random walk. It
efficiently exploits historical information to speculate on new
search points with expected improved performance.

Much other attention is given to the development of GAs
for MINLP. For instance, Yokota et al. developed a penalty
function that is suitable for solving MINLP problems.11 Costa
and Oliveira also implemented another type of penalty function
to solve various MINLP problems, including industrial-scale
problems.12 They also noted that the evolutionary approach is
efficient, in terms of the number of function evaluations, and
is very suitable to handle the difficulties of the nonconvexity.
Going one step further, Barbosa and Lemonge13 developed an
adaptive penalty function for handling both equality and
nonequality constraints. Note that the stochastic approach is
based on a random sampling on the solution space. Hence, it is
not guaranteed that the entire solution space is uniformly
discovered. In case of highly constrained optimization, Burke
et al.14 implemented a hybrid GA to solve a time-tabling problem
by combining GA with heuristic rules.

Information theory was first derived by Shannon.15 The basic
spirit of information theory is to quantify the amount of
information obtained from a sampling. Hence, it is more
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desirable to sample a point that possesses more information.
Based on this idea, Chen et al. derived an information-driven
experimental design approach by implementing the so-called
information free energy and an artificial neural network meta-
model to minimize the number of experiments.16 Information
theory was first implemented for a GA by Tsujimura and Gen.17

They implemented information theory to select the best chromo-
some for a traveling salesman problem (TSP). Yeh and Jang18

implemented this idea to solve some benchmark and process
design problems for unconstrained nonlinear optimization
problems.

In this work, we focus on the prematurity problem of GAs.
A novel approach to allocate the “most informative” areas to
perform efficient mutation is also derived. Furthermore, a
modified local search that helps to improve the qualities of the
solutions is also adopted. Five popular MINLP problems are
solved to show the validity of this approach.

The remainder of this paper is organized as follows. In the
next section, the problem of MINLP is stated and the back-
ground of GAs is briefly reviewed. In section 3, our approach
(i.e., the information-guided genetic algorithm, IGA) is derived.
In section 4, five industrial-scale examples are studied to verify
our approach. In the last section, conclusive remarks are given.

2. Background

2.1. The MINLP Problem. The most general statement of a
MINLP problem is

whereF(X,Y,Z) is the objective function;X ) (x1, ..., xi, ...,xe)
is a vector of real variables such that for each variablexi,
there exists a upper boundxi

U and a lower boundxi
L; Y )

(y1, ...,yi, ...,yd) is a vector of integer variables such that for
each variableyi, there exists a upper boundyi

U and a lower
boundyi

L; Z ) (z1, ...,zi, ...,zn) is a vector of binary variables;
gi(X,Y,Z) g 0 is the inequality constraint function;hj(X,Y,Z) )
0 is the equality constraint function; andNg and Nh are the
number of respective constraints.

2.2. The Canonical Steps of the Genetic Algorithm.Let
us consider a vector of variables as a chromosome or an
individual, and the element of the vector as a gene in the GA.
A set of individuals is called a population, and the population
size is the number of individuals at the generation. The canonical
steps of a GA can be described as follows:

Step 1.A population of candidate solutions is initialized,
subject to certain constraints.

Step 2.Each chromosome in the population is evaluated
through the objective function.

Step 3.New generations are generated after genetic operations
such as selection, crossover, mutation, and reinsertion.Selection
refers to selecting parents to generate offspring.CrossoVer
(which is also called recombination) refers to the generation of
offspring according to the characteristics of their parents. In
mutation, traditionally, the operation typically works by selecting
an individual according to the mutation rate and then the variable

to be modified is chosen randomly. (In this work, it is termed
“traditional mutation operation”.)Reinsertion involves the
selection of a gene group as a new generation from the offspring
and parents.

Step 4.Compute the objective value and determine if the
termination condition is satisfied.

Step 5.The process is halted if a suitable solution has been
found or if the available computing time has expired; otherwise,
the process proceeds to step 2, where the new chromosomes
are scored, and the cycle is repeated.

3. The Information-Guided Genetic Algorithm (IGA)

3.1. Prematurity. Genetic operation may become trapped at
a local optimum if all individuals in the population are similar.
This situation is called prematurity. In conventional GAs,
mutation has an important role in regard to eliminating
prematurity. However, it is hard to expect that a small amount
of mutated individual will still survive in the next generation
while a low mutation probability is set, which means that
prematurity may replay very soon. The Niching technique19-21

is one of the very useful tools to retain the diversity of the
population. Having the objective of finding all local optima,
these approaches form different species, one of which is
identified as a local optimum. Another helpful approach is to
implement a mutation operator. Many useful mutation operators
are well-known such as Flip Bit, Boundary, Non-Uniform,
Uniform, and Gaussian. Recently, differential operators have
been discussed and proved to be efficient mutation operators.22,23

In this work, prematurity is detected by calculating the
difference between individuals of the same population, and
information entropy is implemented to refresh the premature
population efficiently.

3.2. The Information Entropy. According to Shannon’s
definition of information entropy,14 for a variableV, which can
randomly take a valueV from a set V, the information entropy
of the set V is

wherep(V) is the probability of eventx occurring. IfV can only
take a narrow range of values,p(V) for these values is∼1. For
other values ofV, p(V) is close to zero. Therefore,E(V) is close
to zero. In contrast, ifV can take many different values each
time with a smallp(V), E(V) can be a large positive number.
Therefore, information entropy is a measure of how random a
variable is distributed.

Information entropy for a set of integers has been well-
developed24 and is easy to implement by this work. In the case
of real variables, the probability and information entropy must
be redefined by dividing the solution space of each variable
into several subspaces. Consider the optimization problem
described by expression 1, suppose the variable number isI,
and V∈V ) {(V1, V2, ...,Vi, ...,VI)|Li eVi e Ui }. For each
variableVi, we divide the variableVi into R sections of equal
size. LetS ) {sr,i|i ) 1, ...,I, r ) 1, ...,R} andsr,i ) [Li

r,Ui
r],

where

and

E(V) ) -∑
V∈V

p(V) ln p(V) (2)

Li
r ) Li + r - 1

R
(Ui - Li)

(for i ) 1, ...,I andr ) 1, ...,R) (3a)

min
x,y,z

F(X,Y,Z) (1)

s.t.: gi(X,Y,Z) g 0 (for i ) 1, ...,Ng)

hj(X,Y,Z) ) 0 (for j ) 1, ...,Nh)

xi
L e xi e xi

U (X ∈ Re)

yi
L e yi e yi

U (Y∈ Id)
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Let us define the probability that the variableVi takes the values
in subspacesr,i ) [Li

r,Ui
r] in the previous iterations:

The total information entropy of the setVi then is

3.3. Information-Guided Mutation Approach. Let the
variableI be the number of problems, and there areJ individuals
in each population; the individuals then are{Vi,j|i ) 1, ...,I and
j ) 1, ...,J}, whereVi,j is the ith variable of thejth individual.
The detectorD is computed as follows:

where Mp is the population size andVi,k is a variable of a
reference individual. LetDM be a small-valued constant.18 If D
< DM, then all the individuals are similar, which means
prematurity occurred. In this case, the information entropy is
implemented in the mutation stage to eliminate prematurity. This
novel approach is called information-entropy-guided muta-
tion.

As the information entropy of each variableE ) {E1, E2, ...,EI}
is calculated, the diversity of each variableVi (i ) 1, ...,I) is
measured. Variables with the lowest information entropy will
be selected as follows:

whereE′ is the set of entropy parameters that have the lowest
value, andΩ is the set of corresponding variables that is selected
to be mutated. Note that the aforementioned idea is a novel
mutation operator. For more details, the reader is referred to
our previous work.18

In this work, the number of variables to be mutated (K) is a
self-adjusted parameter, chosen as follows:

wherePm is the mutation probability. By implementing eq 9,
in cases of generations with higher prematurity, more variables
will be discovered.

In caseD > DM (i.e., prematurity does not happen), the
traditional mutation operator11 is performed. Note that, although
DM is not a very critical parameter, a very reasonable guideline
to tune this factor is to investigate the final population distance
of a traditional GA and then assign their total distances as the
DM value.

3.4. Handling of Binary, Integer, and Continuous Vari-
ables. In the GA, the potential solution to each problem is

denoted as a chromosome that consists of decision variables.
In this work, we apply direct coding11 for variables, which are
defined in the following way: binary variables are represented
in a binary code; integer and continuous variables are coded as
the values within their bounds. Thus, initial chromosomes are
generated randomly within variable bounds. Therefore, no
feasible points are required initially in our proposed algor-
ithm.

(1) In the selection stage, a stochastic universal sampling
selection rule,19 which can provide zero bias and minimum
spread, is selected.

(2) In the recombination stage, uniform crossover (the
crossover rate is 0.85) is applied to binary variables. Uniform
crossover must be claimed to reduce the bias associated
with the length of the binary representation used and the
particular coding for a given parameter set. On the other hand,
intermediate recombination19 is adopted for integer and continu-
ous variables. The variable values of the offspring are chosen
somewhere between the variable values of the parents as
follows:19

whereai is a scaling factor chosen uniformly at random over
an interval [-0.25, 0.75] for each variable anew. The results
of eq 10 for integer variables are rounded to the nearest integral
values.

(3) In the mutation stage, the following approach is adop-
ted. While the ordinary mutation operator (the mutation rate is
0.1) is activated, the binary variable values are changed from
0 to 1, or from 1 to 0; the integer variable values are
changed to another random value in their corresponding bounds.
While mutation is activated, mutation for binary and integer
variables is determined to occur for the value with lowest
subspace probability. Regardless of which mutation method is
activated, for continuous variables, we choose the algorithm
proposed by Mu¨hlenbein and Schlierkamp-Voosen,25 as
follows:

wheresi ∈{-1, +1} is a uniform random number;ri ) r‚domain
(wherer is the mutation range (typically,r ∈ [10-6,0.1])); bi )
2-uj (whereu ∈ [0,1] is uniform at random, andj ∈ {4, 5, ..., 20}
is the mutation precision.

(4) In the reinsertion stage, the local search for the individuals
after the mutation stage is first performed (see section 3.6).
Elitist reinsertion is then implemented to choose the best
chromosomes from the parents and offspring, and the number
of the chromosomes is selected and set to meet the population
size. Note that the chromosomes obtained from the information-
guided variables are kept in the new generation.

3.5. Handling of Equality and Inequality Constraints. Most
engineering problems are constrained optimization problems.
Penalty function approaches are often used to solve these
problems. A penalty term is added to the objective function.
Using this modification, both feasible solutions and infeasible
solutions can be evaluated in the optimization procedure. The
original constrained optimization problems are converted to
unconstrained optimization problems. Although the penalty
function requires different parameters in terms of different
problems, it is used widely, because of its simplicity and
convenience.

Ui
r ) Ui - R - r

R
(Ui - Li)

(for i ) 1, ...,I andr ) 1, ...,R) (3b)

Pr,i ) P(Vi ) Vi|Vi ∈ sr,i)

(for i ) 1, ...,I andr ) 1, ...,R) (4)

Ei ) -∑
r)1

R

Pr,i log(Pr,i) (for i ) 1, ...,I andr ) 1, ...,R)

(5)

D ) ∑
i)1

I

∑
j)1

J |Vi,j - Vi,k|

Mp

(6)

E′ ) {Eω1
, Eω2

, ...,EωK
| Eωm

e Ei (1 e ωm e I, 1 e i e I,

andi * ωm, wherem ) 1, ...,K, for K e I)} (7)

Ω ) {Vω1
, Vω1

, ...,VωK
} (8)

K )
PmI + (1 - Pm) × I × (DM - D)

DM
(9)

Vi ) Vi
Pa1ai + Vi

Pa2(1 - ai) (for i ) 1, 2, ...,I) (10)

Vi
Mut ) Vi + siribi (for i ) 1, 2, ...,I) (11)
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In this work, the penalty function26 is extended to examine
continuous variables, binary variables, and integer variables as
follows. Set

where

〈f(V)〉 is the average objective function values of the current
generation,Voj(V) (j ) 1, ...,m) is the amount of violation of
the jth constraint by the candidate solution V,〈Vol(V)〉 is the
violation of the lth constraint averaged over the current
population,mdenotes the number of constraints to be penalized,
h represents the equality constraints, andg represents the
inequality constraints.

This penalty function does not require any predefined
parameters except the values of the average objective function
and the constraints’ violations. It is a simple, adaptive, param-
eterless penalty scheme for the solution of constrained problems
via GAs.

3.6. Local Search. Local search can improve the GA
solutions. Ombuki and Ventresca27 mentioned that local search
during mutation will accelerate at a convergent speed but extend
the computation time. In their case, the problem was an
unconstrained discrete time system.

In the case of constrained optimization, the stochastic
approach adopted in this work has a major concern in regard to
feasibility of the new generation. In this work, the following
local searches over a period of a certain number of generations
are performed before the stage of reinsertion, using the reinserted
points as initial points. By fixing the integer variableY and the
binary variableZ, the following problem is solved by a general-
purpose nonlinear programming (NLP) solver, such asfmincon
in MATLAB:

Although it may bring a small increase in the function calls, it
will improve the feasibility (section 4.3) and the quality of the
solutions greatly (see sections 4.1 and 4.2).

3.7. The Algorithm. The algorithm is shown in Figure 1,
which follow the canonical steps of a GA described in section
2.2. In the mutation stage, the distance test described in section
3.3 is performed first. In the case of prematurity, information-
guided mutation is performed and these chromosomes are kept
together with the best chromosomes among the remainders in
the reinsertion stage. Otherwise, the traditional mutation and

Figure 1. Flowchart of IGA.

Table 1. Possible Global Optimum and Two Local Optimal Solutions

N S B TL C

possible global optimum 1 1 1 480 720 960 240 120 20 16 38499.8
local optimums

No. 1 2 2 1 250 360 480 120 60 10 8 40977
No. 2 2 1 1 373.33 560 746.67 186.67 93.333 20 8 41844

F(V) ) {f(V) (if V is feasible)

fh(V) + ∑
j)1

m

kjVoj(V) (if otherwise)
(12)

fh(V) ) {f(V) (if f(V) > 〈f(V)〉)
〈f(V)〉 (if otherwise)

kj ) |〈f(V)〉|
〈Voj(V)〉

∑
l

m

[〈Vol(V)〉]2

Voj(VR) ) {|hj(V)| (for an equality constraint)
max{0, -gj(V)} (otherwise)

min
x

F(X,Y,Z) (13)

s.t.: gi(X,Y,Z) g 0 (for i ) 1, ...,Ng)

hj(X,Y,Z) ) 0 (for j ) 1, ...,Nh)

xi
L e xi e xi

U (X ∈ Re)
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reinsertion approaches are performed. Furthermore, a local
search in everyJL generations, to find more-feasible solutions,
is implemented as shown in Figure 1.

The termination criterion is used to stop the optimization
process. In our cases, when a given maximum number of
generations is reached, the search process is stopped and the
best solutions are returned.

4. Case Studies

Numerical experiments are conducted to show the validity
of our theory developed in the previous section. Five industrial
scaled problems are solved. In section 4.1, three multiproduct
batch plant problems of different sizes are solved. Compared
with the original reports, the frequency of discoveries of the
global minimum is highly enhanced in the first problem and
better optimum and alternative solutions are found in the second
example. In section 4.2, the optimization of regulatory metabolic
reaction network is solved without further variable transforma-
tions. Other local optimal solutions that are of interest of design
engineers are provided by this approach. In section 4.3, a three-
level pump network optimization problem is solved without
variable transformations.

4.1. Multiproduct Batch Plant Problem. The following
multiproduct batch problem was initially studied by Grossmann
and Sargent.5 As shown in Figure 2,N different products are
manufactured onM batch processing stages. In each stagej, Nj

units operate independently and all the units have the same size
Sj; the time required to process one batch of producti in stage
j is Tij. For each product,Bi is the size,ni the number of the

batches,Qi the total production,TLi the maximum cycling time.
The design problem is to chooseNj, Sj, Bi, andTLi to minimize
the capital costC of the plant. It becomes the following MINLP
problem:

whereH is the given period of time,Rj andâj are appropriate
cost parameters,Sij >0, tij >0 are constants, and the termsNj

u,
Sj

l, andSj
u are the given limits.

(1) M ) 3, N ) 2. This case has been studied in many
previous works (e.g., Kocis and Grossman,6 Angira and Babu23).
In this example, the following values are implemented for the
IGA, as depicted in section 3.7:DM ) 50,JL ) 200, maximum
number of generations) 1000, andMp ) 14. Without further
transformation of the problem, the same global optimum as that
provided in previous works is obtained, as listed in Table 1.
Note that two different local optima, which may be of interest
to the design engineer, are also provided by this algorithm, as
listed in Table 1.

Figure 3 gives the histories of the decreasing of the objective
function, as a function of number of generations by IGA. Note
that the plot is based on the averages of 20 simulation runs. To
show the necessity of the modification of the traditional GA,
IGA is compared with traditional GA (no IF, no local search),
GA plus information-guided mutation (GA+IF), and GA plus
local search only (GA+local search). It is obvious that only
the approach proposed in this work converges to a possible
global minimum with a satisfactory speed.

The comparison of the statistical properties of the “best”
solutions found by the four methods is shown in Table 2.
Compared with other GA methods, IGA yields the lowest
average objective function values and much lower standard
deviations (STDs). Furthermore, the average number of function
calls per run using our approach is 30 867, which is much lower
than the data reported by a modified GA-based original work.23

Figure 2. Multiproduct batch problem.

Figure 3. Comparisons of IGA with other GAs for multiproduct batch
example (M ) 3, N ) 2).

Table 2. Comparison of the Statistics of Four Different GAs for the
Multiproduct Batch Example ( M ) 3, N ) 2)

GA GA+IF GA+local
IGA

(GA+IF+local)

average 43370 41502 39799 38499
standard deviation 1901.8 2577.1 1708.5 7.6695× 10-12

number of function
evaluations

25905 25198 28598 30867

min C ) min ∑
j)1

M

RjNjSj
âj

s.t.∑
i)1

N QiTLi

Bi

e H

Sj g SijBi (for i ) 1, 2, ....,N , j ) 1, 2, ....,M)

NjTLi g tij (for i ) 1, 2, ....,N , j ) 1, 2, ....,M)

1 e Nj e Nj
u (for j ) 1, 2, ....,M)

Sj
l e Sj e Sj

u (for j ) 1, 2, ....,M)

TLi
l e TLi e TLi

u (for i ) 1, 2, ....,N)

Bi
l e Bi e Bi

u (for i ) 1, 2, ....,N)

Nj ≡ integer

TLi
l ) max

tij

Nj
u

TLi
l ) maxtij

Bi
l )

Qi

H
TLi

Bi
u ) min (Qi, min

Sj
u

Sij
) (14)
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(2) M ) 6, N ) 5. This problem was studied by Kocis and
Grossman.6 Originally, 22 variables and 61 inequality constraints
existed in this problem. The problem size is equivalent to solving
4096 NLP subproblems. Cardosa et al.4 implemented a SA
approach with some modifications to the original problem to
solve this problem, and they reported the optimal and suboptimal
solutions that are listed in Table 2.4 They claimed that, although
the rate of discovery of the ill-conditioned possible global
optimum is only 2.6%, they only implemented half of the
constraints given by the original work,6 because of the neglect
of variable transformations. Hence, additional algebraic efforts
become unnecessary.

In this example, the following values are implemented for
the IGA, as depicted in section 3.7:DM ) 50, JL ) 400, the
maximum number of generations) 2000, andMp ) 14. Without
further transformation of the problem, 22 variables and only
61 constraints, the possible global optimum, which is consistent
with the original work by Kocis and Grossman,6 and one local
minimum, are also obtained, as shown in Table 3.

Figure 4 gives the history of the decreasing of the objective
function, as a function of the number of generations by IGA.
Note that the plot is based on the averages of 20 simulation
runs. To show the necessity of the modification of the traditional
GA, IGA is compared with traditional GA (no IF, no local
search), GA+IF, and GA+local search. It is obvious that only

the approach proposed in this work converges to a global
minimum with a satisfactory speed.

The comparison of the statistical properties of the “best”
solutions found by the four methods based on 20 runs is shown
in Table 4. The four different GAs terminate in case the best
fitness value of each generation does not change within the last
10 iterations. Compared to other GA methods, IGA yields the
lowest average objective function values, one-third or lower
STDs, and the highest frequency of occurrence of possible global
optimum. Furthermore, the average number of function calls
per run using our approach is 73 075, which is only 8.8% of
the original report (831 149 function calls) by Cardosa et al.;4

and the occurrence of possible global optimum is 95%,
compared with the value of 2.6% that has been given by Cardosa
et al.4

(3) M ) 12, N ) 8. An extension of the aforementioned
problem to M ) 12, N ) 8 is studied in this section. By
implementing mathematical programming, 40 variables and 217
constraints should be implemented. The problem size is
equivalent to solving 2.4414× 108 NLP subproblems (see, e.g.,
Goyal and Ierapetritou28). The problem parameters are set such
that Vj

L ) 1000l , Vj
U ) 10000l. For other parameters, the

reader is referred to Appendix B of the original work.28

In this work, the following values are implemented for the
IGA, as depicted in section 3.7:DM )300, JL )300, the
maximum number of generations) 2600, andMp ) 14. Without
further transformation of the problem, 40 variables and only
193 constraints, which is fewer than the original report,28 are
implemented. The possible global optimum and three nearby
local optimal solutions that have been discovered by IGA are
listed in Table 5.

Again, Figure 5 gives the histories of the decreasing of the
objective function, as a function of the number of generations,

Table 3. Possible Global Optimum and Two Local Optimal Solutions

N S B TL C

possible global optimum
2 2 3 3000 1891.6 1974.7 379.75 770.31 727.52 3.2 3.4 6.2 3.4 3.7 285 510
2 1 1 2619.1 2328.1 2109.8 638.3 525.43

local optimum
2 2 3 2898.8 2143.3 1939.6 354.99 816.83 771.34 3.2153 3.633 6.4586 319 360
2 2 1 2831.4 2494.7 2324.1 552.61 509.62 3.4808 2.2286

Table 4. Comparison of the Statistics of Four Different GAs for the
Multiproduct Batch Example ( M ) 6, N ) 5)

GA GA+IF GA+local
IGA

(GA+IF+local)

average 299140 293150 292960 287200
standard deviation 24156 5033.5 22868 7570.3
number of function

evaluations
51843 51809 78089 73075

Table 5. Possible Global Optimum and Two Local Minima Discovered by IGA

N S B TL C

possible global optimum

2 2 2 2 2 10000 5949.4 6582.3 1265.8 1829.3 4.15 3.4 6.2 1.903× 106

1 1 1 1 2 6219.5 7721.5 5319.1 1662.9 2127.7 3.4 2.85 2.5
2 1 6036.5 5674.8 7649.6 1382.1 1091.3 3.2 2.15

7150.7 6984.4 7649.6 1265.8 2417.8

Local Optimums

No. 1

2 2 3 2 2 10000 5949.4 6582.3 1265.8 2032.1 3.8 3.4 6.2 1.934× 106

1 1 1 6909.3 7721.5 5627.5 1852.8 2127.7 3.4 4.2 2.7
1 2 1 1 6706.1 6096.4 8522.7 1535.4 1172.4 3.2 3.4

7966.9 7781.6 8522.7 1265.8 2557.9

No. 2

3 2 3 2 2 9885.7 5881.4 6507.1 1251.4 1782.4 3.8 3.2 6.2 1.979× 106

1 1 1 6131.7 7633.3 5258.4 1567 2103.4 3.4 2.85 2.5
1 2 2 1 5882 5347.3 7208.1 1362.6 1028.3 3.2 2.15

6738 6581.3 7208.1 1251.4 2390.2

No. 3

2 2 3 2 3 7960.3 4735.8 5239.7 1007.6 1452.2 3.2 3.4 5.95 2.036× 106

2 1 1 1 3 4937.4 6146.5 4232 1276.6 1692.8 2.2 2.1 1.4167
2 2 4792.2 4356.5 5872.5 1097.2 837.79 2.1 2.15

5489.5 5361.9 5872.5 1007.6 1923.7

Table 6. Comparison of the Statistics of Four Different GAs for the Multiproduct Batch Example (M ) 12, N ) 8)

GA GA+IF GA+local
IGA

(GA+IF+local)

average 2.1609× 106 2.1773× 106 2.0822× 106 1.9648× 106

standard deviation 81577 96379 1480700 47598
number of function

evaluations
41463 41428 63098 91984
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based on the average of 20 simulation runs. The four curves in
Figure 5 again represent the cost at a certain generation using
the method with or without information entropy and local search.
Once again, only the approach proposed by this work discovers
the global minimum with a satisfactory speed. The statistical
comparison of the four methods based on 20 runs is shown in
Table 6. The four different GAs are terminated in case the best

fitness value of each generation does not change within the last
10 iterations. Compared to other GA methods, although IGA
requires a slightly higher number of average function calls per
run, it has the lowest average and second-lowest STD of the
objective function values.

4.2. The Regulatory Metabolic Reaction Network Prob-
lem. In this section, the same example that was studied by
Hatzimanikatis et al.2 is studied. It involves yield optimization
in xanthine monophosphate (XMP) and guanosine monophos-
phate (GMP) production. As shown in Figure 6,Xj represents
the concentration of the metabolitej (j ) 1, ..., 4),Pl represents
the amount of manipulated variablel (l ) 1, ..., 6), the dashed
lines denote inhibition, and dashed-dotted lines denote activa-
tion. The S-system representation allows for the description of
biochemical systems by nonlinear models of power-law form.
The S-system representation of the aforementioned pathway
is

SettingYi ) ln Xi, the optimization problem becomes

wherewl (l ) 1, ..., 6) and{z13 ,z14, z21, z22, z23, z24, z34, z43, z53,
z64} are binary variables,yj (j ) 1, ..., 4) andql (l ) 1, ..., 6)
are continuous variables, L represents the lower bound, and U
represents the upper bound.

Figure 4. Comparisons of IGA with other GAs for multiproduct batch
example (M ) 6, N ) 5).

Figure 5. Comparisons of IGA with other GAs for multiproduct batch
example (M ) 12, N ) 8).

Figure 6. Superstructure of the XMP and GMP synthesis pathway.

dX1

dt
) 900X3

-0.5X4
-0.5P1 - 10X1

0.5X2
-0.1X3

-0.2X4
-0.2P2

0.6P3
0.4

dX2

dt
) 7.34X1

0.308X2
-0.062X3

-0.162X4
-0.1P2

0.37P3
0.245P4

0.385-

43.8X2
0.42X3

-0.339X4
-0.5P5

0.4P6
0.6

dX3

dt
) 2.71X2

0.409X3
-0.387P5

0.455- 0.036X1
0.041X3

0.43X4
-0.014P3

0.28

dX4

dt
) 13.03X2

0.041X4
-0.399P6

0.405- 0.143X3
-0.026X4

0.40P4
0.26

Pi ) 1 (for i ) 1, ..., 6) (15)

max (y4)

s.t.-0.5y1 + 0.1y2 - 0.3y3 - 0.3y4 - z13ε13y3 - z14ε14y4 +
0.6z21ε21y1 + 0.6z22ε22y2 + 0.6z23ε23y3 + 0.6z24ε24y4 +

0.4z34ε34y4 + w1q1 - 0.6w2q2 - 0.4w3q3 ) -4.4998

0.308y1 - 0.482y2 + 0.177y3 + 0.4y4 - 0.37z21ε21y1 -
0.37z22ε22y2 - 0.37z23ε23y3 - 0.37z24ε24y4 -
0.245z34ε34y4 - 0.385z43ε43y3 + 0.4z53ε53y3 +

0.6z64ε64y4 + 0.37w2q2 + 0.245w3q3 + 0.385w4q4 -
0.4w5q5 - 0.6w6q6 ) 1.7863

-0.14y1 + 0.409y2 - 0.817y3 - 0.014y4 -
0.455z53ε53y3 + 0.287z34ε34y4 - 0.28w3q3 +

0.455w5q5 ) -4.3212

0.041y2 + 0.026y3 - 0.799y4 - 0.405z64ε64y4 +
0.26z43ε43y3 - 0.26w4q4 + 0.405w6q6 ) -4.5122

bounds onyj (for j ) 1, 2, 3): {ln(4.9)g y1 g ln(6.0)
ln(192)g y2 g ln(234)
ln(2176)g y3 g ln(2660)

bounds onPl (for l ) 1, ..., 6): ln(Pl
L) g Pl g ln(Pl

U)
(16)
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In this example, the following values are implemented for
IGA: DM ) 1, JL ) 400, the maximum number of gener-

ations) 2600, andMp ) 14. After 2600 generations, several
local minima with different network structures are found. As
discussed in the work of Hatzimanikatis et al.,2 it is very
important to find a feasible solution with the least modi-
fication from the original structure of the network. Without
further transformation of the original problem of eq 15, using
26 variables (compared to 42 variables of the original work)
and 13 constraints (compared to 77 constraints of the original
work), 5 local optima are discovered and are listed in Table
7.

Figures 7 and 8 show network structures of solutions 4 and
5, which are listed in Table 7. The values of the variableswl (l
) 1, ..., 6) ,{z13, z14, z21, z22, z23, z24, z34, z43, z53, z64}, ql (l )
1, ..., 6), andx4 in each solution are shown in Table 7. Compared
to the original yield reported by the work (i.e.,x4 ) 55015.6),
it is clear that solution 4 gives 26.6% higher yields. However,
solution 4 requires one more modification on the metabolic
network, as shown in Figure 7, although less modifications on
the enzymes are required. Furthermore, some network structures,
such as solution 5 suggested by this work, have less modification
from the original metabolic structure, and this is of the interest
of design engineers, as shown Figure 8, although slighty less
product yield can be achieved, as shown in Table 7. Note that
each “1” of w andz in Table 7 indicates a modification to the
original structure. As shown in Table 7, most solutions obtained
uaing this approach have less modification to the original
structure.

Again, Figure 9 gives the histories of the decreasing of the
objective function, as a function of the number of generations,
based on the average of 50 simulation runs. As shown in Figure
9, the performance of IGA is superior to other GAs. The
comparison of the statistics of all four approaches is shown in
Table 8. Compared to other GA methods, although the proposed
method yields the higher average number of function calls per
run, the statistics of the objective function values are much
superior to other GAs.

4.3. Pump Network Problem.A schematic plot of a three-
level pump network configuration is given in this section. As
described by Westerlund et al.,29 the problem can be summarized
as follows. Select the best pump or configuration of pumps
coupled in series and/or parallel. Given the pressure rise (total
head), as a function of the capacity of a set of centrifugal pumps,
as well as the total required pressure rise and total flow for the
configuration to be selected, the MINLP problem can be
expressed as follows:

Figure 7. Network structure of solution 4.

Figure 8. Network structure of solution 5.

Figure 9. Comparisons of IGA with other GAs for the regulatory metabolic
reaction network example.

Table 7. Values of Variables in the Original Solution and IGA Solutions 1-5

w (w1-w6) z(z13, z14, z21, z22, z23, z24, z34, z43, z53, z64) q (q1-q6) x4

original solution 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1.6094 1.6094-0.3634 1.6094-0.4354 1.2513 55015.6
IGA solution 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1.4722 1.2906-1.3646 0.42012 0.17209-0.29841 52575
IGA solution 2 1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1.2309 1.6094-1.6094 0.60501-0.23505-0.17344 65121
IGA solution 3 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1.6094 1.6094 1.0534 1.5246 1.6027 0.29228 56613
IGA solution 4 1 1 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1.534 1.6072-0.45455 0.77799-0.20221 0.65065 69633
IGA solution 5 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1.126 1.4727-0.1548 0.4643 0.0361-1.2034 49811

Table 8. Comparison of the Statistics of Four Different GAs for the
Regulatory Metabolic Reaction Network Example

GA GA+IF GA+local
IGA

(GA+IF+local)

average 8.9284 10.684 10.375 10.951
standard

deviation
3.4368 0.46561 1.3125 0.32403

number of
function
evaluations

67359 67358 79594 78670
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wherezi represents binary variables, which denote the existence
of level i; Npi ∈ {0,1,2,3} andNsi ∈ {0,1,2,3} are the integer
variables, whereNpi denotes the number of parallel lines and
Nsi denotes the number of pumps in series at leveli; xi ⊂ [0,1],
V̆i ⊂ [0,Vtot], ωi ⊂ [0,ωmax ], Pi ⊂ [0,Pmax,i] and∆pi ⊂ [0,∆Ptot]
are continuous variables, wherexi is the fraction of total flow
going to leveli, V̆i the flow rate on each line,ωi the rotation
speed of all pumps,Pi the power requirement, and∆pi the
pressure increase at leveli. The details of the problem can be
found in section 12.5 of Floudas et al.30 Note that no variable
transformation is implemented in this work; hence, no additional
variables or constraints are added. Algebraic operation is
significantly reduced.

In this example, the following values are implemented in the
proposed IGA:DM ) 100,JL ) 150, the maximum number of
generations) 1200, andMp ) 14. The possible global optimum
with the objective function value 128 894 FIM/yr is obtained,
corresponding toz ) [1 1 0], Np ) [2 1 0], Ns ) [1 2 0], x )
[0.91429 0.085714 0 ],ω ) [2855.1 2950 0],P ) [28.27 2.63 0],
and∆p ) [400 200 0].

Figure 10 shows the objective values, as a function of the
number of generations, using two different types of GAs, based

on the averages of 50 runs. Unlike the previous cases, traditional
GA and GA+IF approaches failed to discover the global
minimum, because of the importance of the local search to
guarantee the feasibility of the new generation, as mentioned
at section 3.6. These two cases are not included to compare the
performance of different GAs. As shown in Figure 10, again,
the performance of IGA is superior to the GA+local search
case. Table 9 reveals that IGA is superior to the GA+local
search in the average and STD of the solution of 50 different
runs.

5. Conclusion

The most general formulation of a chemical process design
is essentially the optimization of a mixed-integer nonlinear
programming (MINLP) problem. In this paper, a novel genetic
algorithm (IGA) that substantially improves the efficiency of
the traditional genetic algorithm (GA) is derived. This approach
implements the information theory to refresh the population as
prematurity occurs. A modified local search is performed to
determine the more-feasible solutions in a constant period of
generations. Five popular numerical examples are solved using
this approach. In this work, the proposed approach is easier to
implement without additional algebraic effort than some math-
ematical programming approaches are. Besides, this approach
provides physically meaningful local optima for the consider-
ation of the design engineer. By comparing the results of five
examples, IGA demonstrates superior performance to the
existing stochastic MINLP approaches. The simulation results
also showed that this novel optimizer is valid and efficient for
real applications.

Nomenclature

ai ) a scaling factor
Bi ) the size of producti (for i ) 1, ...,N)
C ) the capital cost of the plant
d ) number of integer variables

min
x,V̆,ω,P,∆P,Np,Ns,z

∑
i)1

3

(Ci + C′iPi)Npi
Nsi

zi

s.t.P1 - 19.9( ω1

ωmax
)3

- 0.1610( ω1

ωmax
)2

V̆1 +

0.000561( ω1

ωmax
)V̆1

2 ) 0

P2 - 1.21( ω2

ωmax
)3

- 0.0644( ω2

ωmax
)2

V̆2 +

0.000564( ω2

ωmax
)V̆2

2 ) 0

P3 - 6.52( ω3

ωmax
)3

- 0.1020( ω3

ωmax
)2

V̆3 +

0.000232( ω3

ωmax
)V̆3

2 ) 0

∆p1 - 629( ω1

ωmax
)2

- 0.696( ω1

ωmax
)V̆1 + 0.0116V̆1

2 ) 0

∆p2 - 215( ω2

ωmax
)2

- 2.950( ω2

ωmax
)V̆2 + 0.0115V̆2

2 ) 0

∆p3 - 361( ω3

ωmax
)2

- 0.530( ω3

ωmax
) V̆3 + 0.00946V̆3

2 ) 0

x1 + x2 + x3 ) 1

V̆iNpi
- xiVtot ) 0 (for i ) 1, 2, 3)

∆Ptotzi - ∆piNsi
) 0 (for i ) 1, 2, 3)

ωi - ωmaxzi e 0 (for i ) 1, 2, 3)

Pi - Pmax,izi e 0 (for i ) 1, 2, 3)

∆pi - ∆Ptotzi e 0 (for i ) 1, 2, 3)

V̆i - Vtotzi e 0 (for i ) 1, 2, 3)

xi - zi e 0 (for i ) 1, 2, 3) (17)

Figure 10. Comparisons of the performance of IGA with GA+local search.

Table 9. Comparison of the Statistics of Two Different GAs for the
Pump Network Problem

GA+local search IGA

average 156470 135890
standard deviation 15758 4992.5
number of function evaluations 55374 47958
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DM ) a constant set as a threshold
e ) number of continuous variables
E ) information entropy of a set
Ei ) information entropy of a variableVi (for i ) 1, ..., I)
E′ ) a set of lower entropy
F ) objective function
gi ) inequality constraint (fori ) 1, ..., Ng)
hj ) equality constraint (forj ) 1, ..., Nh)
H ) the given period of time
I ) number of variables
J ) number of individuals in each population
JL ) the number of generations to perform each local search
kj ) penalty parameter (forj ) 1, ...,m)
K ) number of mutation variables
Li ) lower bound of variablesVi (for i ) 1, ..., I)
m ) number of constraints to be penalized
M ) number of processing stages in series
Mp ) population size
n ) number of binary variables
ni ) the number of the batches for producti (for i ) 1, ...,N)
N ) number of products
Ng ) number of inequality constraints
Nh ) number of equality constraints
Nj ) number of parallel units for stagej (j ) 1, ...,M)
Npi ) the number of parallel lines at levelI of the pump network
Nsi ) the number of pumps in series at leveli of the pump

network
Pi ) the power requirement at leveli of the pump network
∆pi ) the pressure rise at leveli at leveli of the pump network
Pl ) the amount of manipulated variablel (for l ) 1, ..., 6)
Pm ) mutation probability
Pr,i ) the probability that the variableVi takes the values in

subspacesr,i (for i ) 1, ..., I and r ) 1, ...,R)
ql ) the logarithm ofPl (for l ) 1, ..., 6)
Qi ) the total production for producti (for i ) 1, ...,N)
R ) number of sections of the variable divided
si ) uniform random number of variablei (si ∈ {-1,+1}, i )

1, ..., I)
sr,i ) subspace of variables (fori ) 1, ..., I and r ) 1, ...,R),

) [Li
r,Ui

r]
Sij ) constants
Sj ) the size of product for stagej (for j ) 1, ...,M)
tij ) constants
Tij ) the time required to process one batch of producti in

stagej
TLi ) the maximum cycling time for producti (for i ) 1, ...,N)
U′i ) lower bound of variablesVi (for i ) 1, ..., I)
V ) a vector of variables
Vi ) value of variablei in sectionk (for i ) 1, ..., I)
V̆i ) the flow rate on each line at leveli of the pump network
Vi,j ) the ith variable of thejth individual
Vi,k ) a variable of a reference individual
Vi

Pa ) parents of variablei (for i ) 1, ..., I)
Vi

Mut ) variablei after mutation stage (fori ) 1, ..., I)
Voj(V) ) the amount of violation ofjth constraint by the

candidate solutionV (for j ) 1, ...,m)
wl ) binary variables (forl ) 1, ..., 6)
xi ) the fraction of total flow going to leveli of the pump

network
X ) a vector of continuous variables
Xj ) the concentration of the metabolitej (for j ) 1, ..., 4)
Y ) a vector of integer variables
yj ) ln Xj

xi
U yi

U ) upper bound on variablesx andy

xi
L yi

L ) lower bound on variablesx andy
Z ) a vector of binary variables
zi ) the existence of leveli of the pump network
zij ) binary variables

Greek Letters

Rj, âj ) appropriate cost parameters
ωi ) the rotation speed of all pumps at leveli of the pump

network
Ω ) set of corresponding variables that is selected to be mutated
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