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Information-Guided Genetic Algorithm Approach to the Solution of MINLP
Problems

Chi-Ta Young, Ying Zheng,! Chen-Wei Yeh, and Shi-Shang Jang*

Chemical Engineering Department, National Tsing-Huan dgmsity, Hsin Chu, Taiwan

Stochastic methods are widely used for the solution of optimization problems, because of the simplicities
involved in algebraic manipulation of each particular problem. In practice, the feasible region of an engineering
mixed-integer-nonlinear-programming (MINLP) problem is basically nonconvex and even rugged. Genetic
algorithms (GAs) usually suffer from prematurity problems and require many different runs from different
starting points, to avoid the trap of local minima. On the other hand, GAs may provide some possible local
minima that have physical meanings for the engineers in its solution results. In this work, a novel genetic
algorithm—called a information-guided genetic algorithm (IGA}$ developed to solve the general MINLP
problems. This novel approach proposes the implementation of information theory to the mutation stage of
GAs to refresh the premature population. Moreover, the detection index of prematurity of the population is
based on the distances among the individuals. A local search is performed to improve the efficiency of this
approach in every defined period. In this work, no initial feasible point or any problem transformation is
required; thus, no additional variables and constraints are needed. On the other hand, in addition to the possible
global optimum, some more local optimal solutions that may be interesting to the engineer were also found.
Five examples, i.e., three multiproduct batch plant problems with different sizes, an optimization problem of
regulatory metabolic reaction network, and a three-level pump network optimization problem are solved using
this novel approach. The simulation results show that that the rate of convergence and discovery rate of the
global minimum are substantially improved from the traditional GA.

1. Introduction the evolutionary approach does not have this problem. On the
other hand, an evolutionary approach basically cannot guarantee
the global optimum of the problem, but some deterministic
approaches, such as mathematical programming, can provide
more theoretical insight of the problem.

GAs, as proposed by Holladflare search algorithms based
on the mechanics of natural selection and natural genetics. They
combined the survival of the best fit among string structures
with a structured, yet randomized, information exchange to form
search algorithms with some of the innovative flair of human
search. In every generation, a new set of artificial creation
I(strings) is created, using bits and pieces of the best fit of the
old one; an occasional new point is tried for good measure.

Designs of chemical and biological systems are generally
mixed-integer nonlinear programming (MINLP) problems in-
volving both discrete and continuous variables. MINLP is widely
applied in many areas, from large scale desigasnolecular
scale metabolic network desigrA review articlé has shown
that the application of genetic algorithms (GAs) to MINLP is
very effective. The objective of this work is to derive a novel
stochastic MINLP solution approach that includes the basic GA
structure and an information-guided mutation stage.

The common characteristic of these MINLP problems is that
these problems are nonconvex and even rugged with many loca

maxima/minima. The solution approaches for solving MINLP While randomized, GA is not a simple random walk. It

can be roughly divided Into_two categorl‘és'jetermlnlstm' ... efficiently exploits historical information to speculate on new
approaches and stochastic approaches. Various deterministic

algorithms have been publishe8One of typical deterministic se'\aﬂrl(j?hpgiﬂtesr V:tttgri?(op:?;egi\lgﬁr% V?ﬁepgé?gmggzeﬁt of GAs
approacha-BB, which is a very advanced extension of Branch for MINLP. For instance, Yokota et al. developed a penalty
and Bound, overcomes this problem by implementing analytical ¢ i, that is suitable for solving MINLP problerisCosta
and Ioca! smoothing techniques. A _tex;book by Floudas and and Oliveira also implemented another type of penalty function
PardaloSincluded many of these applications, and most of them to solve various MINLP problems, including industrial-scale
are iqteresting to indu§try. Thg other stream of global pptimiza- problems!? They also noted that th,e evolutionary approach is
gﬂﬂe;nth((esi;o;:(?gfs a(?r?;lgﬁrgt%cgggtig);%m%loeﬁs?(I)ml\l/lj:iltfg efficient, in terms of the number of function evaluations, and
. 9> ’ ; is very suitable to handle the difficulties of the nonconvexity.
is an extension of SAOn the other hand, Bjork and Nordnfan Going one step further, Barbosa and LemdAgieveloped an
showed that the GA is very suitable to solve a large-scale heat 9 P ' P

exchanger network. Note that the previously discussed two adaptive _penalty f“.”C“O” for _handling both t_equallty and_
: . ) nonequality constraints. Note that the stochastic approach is
different approaches have their different own values; for . . o
o - : based on a random sampling on the solution space. Hence, it is
example, a deterministic approach usually involves considerable

algebra and undeviating analysis to the problem itself whereasnOt guaranteed that the entire solution space is uniformly
9 9 y P ’ discovered. In case of highly constrained optimization, Burke

et alimplemented a hybrid GA to solve a time-tabling problem
by combining GA with heuristic rules.
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desirable to sample a point that possesses more information
Based on this idea, Chen et al. derived an information-driven
experimental design approach by implementing the so-called
information free energy and an artificial neural network meta-
model to minimize the number of experimeftdnformation
theory was first implemented for a GA by Tsujimura and Gén.
They implemented information theory to select the best chromo-
some for a traveling salesman problem (TSP). Yeh and8ang

to be modified is chosen randomly. (In this work, it is termed
“traditional mutation operation”.)Reinsertion involves the
selection of a gene group as a new generation from the offspring
and parents.

Step 4.Compute the objective value and determine if the
termination condition is satisfied.

Step 5.The process is halted if a suitable solution has been
found or if the available computing time has expired; otherwise,

implemented this idea to solve some benchmark and processhe process proceeds to step 2, where the new chromosomes

design problems for unconstrained nonlinear optimization
problems.

In this work, we focus on the prematurity problem of GAs.
A novel approach to allocate the “most informative” areas to
perform efficient mutation is also derived. Furthermore, a
modified local search that helps to improve the qualities of the
solutions is also adopted. Five popular MINLP problems are
solved to show the validity of this approach.

The remainder of this paper is organized as follows. In the
next section, the problem of MINLP is stated and the back-
ground of GAs is briefly reviewed. In section 3, our approach
(i.e., the information-guided genetic algorithm, IGA) is derived.
In section 4, five industrial-scale examples are studied to verify
our approach. In the last section, conclusive remarks are given.

2. Background

2.1. The MINLP Problem. The most general statement of a
MINLP problem is

r)py@ F(X,Y,2) Q)
st g(XY,2)=0 (fori=1,...,Ny
h(XY2)=0 (forj=1,..,N)
X <x<x (XeR)
yrEvsy o (Yel)

whereF(X,Y,2) is the objective functionX = (X1, ..., X, ..., Xe)
is a vector of real variables such that for each variable
there exists a upper bound’ and a lower bound; Y =
(Y1, .- Yi, ---,Yd) iS @ vector of integer variables such that for
each variabley;, there exists a upper bouryﬂJ and a lower
boundyiL; Z=(z, ...z, ...,zy) is a vector of binary variables;
0i(X,Y,2) = 0 is the inequality constraint functiohj(X,Y,Z) =
0 is the equality constraint function; ard; and N, are the
number of respective constraints.

2.2. The Canonical Steps of the Genetic AlgorithmLet
us consider a vector of variables as a chromosome or an
individual, and the element of the vector as a gene in the GA.
A set of individuals is called a population, and the population
size is the number of individuals at the generation. The canonical
steps of a GA can be described as follows:

Step 1.A population of candidate solutions is initialized,
subject to certain constraints.

Step 2.Each chromosome in the population is evaluate
through the objective function.

d

are scored, and the cycle is repeated.

3. The Information-Guided Genetic Algorithm (IGA)

3.1. Prematurity. Genetic operation may become trapped at
a local optimum if all individuals in the population are similar.
This situation is called prematurity. In conventional GAs,
mutation has an important role in regard to eliminating
prematurity. However, it is hard to expect that a small amount
of mutated individual will still survive in the next generation
while a low mutation probability is set, which means that
prematurity may replay very soon. The Niching techni§ué&
is one of the very useful tools to retain the diversity of the
population. Having the objective of finding all local optima,
these approaches form different species, one of which is
identified as a local optimum. Another helpful approach is to
implement a mutation operator. Many useful mutation operators
are well-known such as Flip Bit, Boundary, Non-Uniform,
Uniform, and Gaussian. Recently, differential operators have
been discussed and proved to be efficient mutation oper&t&rs.

In this work, prematurity is detected by calculating the
difference between individuals of the same population, and
information entropy is implemented to refresh the premature
population efficiently.

3.2. The Information Entropy. According to Shannon’s
definition of information entropy for a variableV, which can
randomly take a value from a set V, the information entropy
of the set V is

E(V)=— Z p() In p(v) )

wherep(v) is the probability of evert occurring. IfV can only
take a narrow range of valug¥y) for these values is-1. For
other values oV, p(v) is close to zero. Therefor&(V) is close

to zero. In contrast, i/ can take many different values each
time with a smallp(v), E(V) can be a large positive number.
Therefore, information entropy is a measure of how random a
variable is distributed.

Information entropy for a set of integers has been well-
developed&* and is easy to implement by this work. In the case
of real variables, the probability and information entropy must
be redefined by dividing the solution space of each variable
into several subspaces. Consider the optimization problem
described by expression 1, suppose the variable numHer is
and veV = {(Vy, Va2, ..., Vi, ., V)|Li =Vi =< U; }. For each
variableV;, we divide the variablé&/; into R sections of equal
size. LetS= {sjli =1, ...,I,r =1,..,R} ands; = [L{,U]],

Step 3New generations are generated after genetic operationsWhe're

such as selection, crossover, mutation, and reinsefiglection
refers to selecting parents to generate offspriGgossaer
(which is also called recombination) refers to the generation of
offspring according to the characteristics of their parents. In
mutation traditionally, the operation typically works by selecting
an individual according to the mutation rate and then the variable

r—1

R

L

=L+ Ui —L

(fori=1,..,landr=1,...,R) (33a)

and



R—r

(Ui - Li)
(fori=1,...,landr=1,...,R) (3b)

Let us define the probability that the variabletakes the values
in subspaces; = [L{,U!] in the previous iterations:
Pi=P(Vi=uly €s))

(fori=1,..,landr=1,..,R) (4)

The total information entropy of the skt then is

R
E=—-) Plog(P)

r=

(fori=1,...,landr=1, ...,R)
(5)

3.3. Information-Guided Mutation Approach. Let the
variablel be the number of problems, and there &iedividuals
in each population; the individuals then g ;li = 1, ...,I and
i =1,...,J}, whereV; is theith variable of thgth individual.
The detectoD is computed as follows:

L3IV =Vl "

1= Mp

where M, is the population size antk is a variable of a
reference individual. Leby be a small-valued constatitlf D
< Dw, then all the individuals are similar, which means
prematurity occurred. In this case, the information entropy is
implemented in the mutation stage to eliminate prematurity. This
novel approach is called information-entropy-guided muta-
tion.

As the information entropy of each varialite= { E;, E, ..., E}
is calculated, the diversity of each variable(i = 1, ...,1) is
measured. Variables with the lowest information entropy will
be selected as follows:

E={E, E, .E, |E, <E(@l<o,<1,1=i<]l,

andi = w,, wherem=1, ..., K, forK < 1)} (7)

Q= {le' V(ul’ "'VwK} (8)
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denoted as a chromosome that consists of decision variables.
In this work, we apply direct codirgfor variables, which are
defined in the following way: binary variables are represented
in a binary code; integer and continuous variables are coded as
the values within their bounds. Thus, initial chromosomes are
generated randomly within variable bounds. Therefore, no
feasible points are required initially in our proposed algor-
ithm.

(1) In the selection stage, a stochastic universal sampling
selection rulé? which can provide zero bias and minimum
spread, is selected.

(2) In the recombination stage, uniform crossover (the
crossover rate is 0.85) is applied to binary variables. Uniform
crossover must be claimed to reduce the bias associated
with the length of the binary representation used and the
particular coding for a given parameter set. On the other hand,
intermediate recombinatiéhis adopted for integer and continu-
ous variables. The variable values of the offspring are chosen
somewhere between the variable values of the parents as
follows:1°

V.=V +VP1—-a) (fori=1,2,..1) (10)

whereg is a scaling factor chosen uniformly at random over
an interval [-0.25, 0.75] for each variable anew. The results
of eq 10 for integer variables are rounded to the nearest integral
values.

(3) In the mutation stage, the following approach is adop-
ted. While the ordinary mutation operator (the mutation rate is
0.1) is activated, the binary variable values are changed from
0 to 1, or from 1 to O; the integer variable values are
changed to another random value in their corresponding bounds.
While mutation is activated, mutation for binary and integer
variables is determined to occur for the value with lowest
subspace probability. Regardless of which mutation method is
activated, for continuous variables, we choose the algorithm
proposed by Mhlenbein and Schlierkamp-Vooséh, as
follows:

VM=V, +srp,

fori=1,2,...1)  (11)

whereE' is the set of entropy parameters that have the lowest Wheres €{ —1, +1} is a uniform random number; = r-domain

value, and? is the set of corresponding variables that is selected

(wherer is the mutation range (typically,e [1076,0.1])); b;

to be mutated. Note that the aforementioned idea is a novel2™ (whereu € [0,1] is uniform at random, ande {4, 5, ..., 20
mutation operator. For more details, the reader is referred toiS the mutation precision.

our previous works8
In this work, the number of variables to be mutat&d is a
self-adjusted parameter, chosen as follows:

o Pul +(L=Py) x 1 x (D, D)
- 5.

)

wherePy, is the mutation probability. By implementing eq 9,

(4) In the reinsertion stage, the local search for the individuals
after the mutation stage is first performed (see section 3.6).
Elitist reinsertion is then implemented to choose the best
chromosomes from the parents and offspring, and the number
of the chromosomes is selected and set to meet the population
size. Note that the chromosomes obtained from the information-
guided variables are kept in the new generation.

3.5. Handling of Equality and Inequality Constraints. Most

in cases of generations with higher prematurity, more variables engineering problems are constrained optimization problems.

will be discovered.
In caseD > Dy (i.e., prematurity does not happen), the
traditional mutation operatdkis performed. Note that, although

Penalty function approaches are often used to solve these
problems. A penalty term is added to the objective function.
Using this modification, both feasible solutions and infeasible

Dw is not a very critical parameter, a very reasonable guideline solutions can be evaluated in the optimization procedure. The
to tune this factor is to investigate the final population distance original constrained optimization problems are converted to
of a traditional GA and then assign their total distances as the unconstrained optimization problems. Although the penalty

Dw value.
3.4. Handling of Binary, Integer, and Continuous Vari-
ables. In the GA, the potential solution to each problem is

function requires different parameters in terms of different
problems, it is used widely, because of its simplicity and
convenience.
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Figure 1. Flowchart of IGA.

Table 1. Possible Global Optimum and Two Local Optimal Solutions

N S B T c
possible global optimum 111 480 720 960 240120 2016 38499.8
local optimums
No. 1 221 250 360 480 120 60 108 40977
No. 2 211 373.33 560 746.67 186.67 93.333 208 41844
In this work, the penalty functidfi is extended to examine 3.6. Local Search.Local search can improve the GA
continuous variables, binary variables, and integer variables assolutions. Ombuki and Ventres€anentioned that local search
follows. Set during mutation will accelerate at a convergent speed but extend
o . the computation time. In their case, the problem was an
f(V) (if Vis feasible) unconstrained discrete time system.
F(V) =1 - m . . (12) In the case of constrained optimization, the stochastic
fvV) + Z kwo(V) (if otherwise) approach adopted in this work has a major concern in regard to
= feasibility of the new generation. In this work, the following
where local searches over a period of a certain number of generations
) are performed before the stage of reinsertion, using the reinserted
V) = {f(V) (it (V) > IV)D) points as initial points. By fixing the integer variabteand the
(V) O (if otherwise) binary variablez, the following problem is solved by a general-
Dboj(V)D purpose nonlinear programming (NLP) solver, suchaiscon
k= 0WV]—— in MATLAB:
m
Z [@o, (V)P min F(X.Y.2) (13)
) ) st g(XY,2)=0 (fori=1,..,Ny)
_ (W) (for an equality constraint)
vo(VR) = max 0, —g(V)} (otherwise) h(XY2)=0 (forj=1,..,Ny)
f(V)Uis the average objective function values of the current xiL =X = in XeR)
generationpo(V) (j = 1, ...,m) is the amount of violation of
the jth constraint by the candidate solution Mg (V)Ois the Although it may bring a small increase in the function calls, it

violation of the Ith constraint averaged over the current will improve the feasibility (section 4.3) and the quality of the
populationm denotes the number of constraints to be penalized, solutions greatly (see sections 4.1 and 4.2).
h represents the equality constraints, agdepresents the 3.7. The Algorithm. The algorithm is shown in Figure 1,
inequality constraints. which follow the canonical steps of a GA described in section
This penalty function does not require any predefined 2.2.Inthe mutation stage, the distance test described in section
parameters except the values of the average objective function3.3 is performed first. In the case of prematurity, information-
and the constraints’ violations. It is a simple, adaptive, param- guided mutation is performed and these chromosomes are kept
eterless penalty scheme for the solution of constrained problemstogether with the best chromosomes among the remainders in
via GAs. the reinsertion stage. Otherwise, the traditional mutation and
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Stage 1 2 i M-1 M batches(Q; the total productionT; the maximum cycling time.
_-_m_-_ The design problem is to choobk §, B;, andT; to minimize
the capital cos€ of the plant. It becomes the following MINLP
No. items N, N; N Ny Ny problem:
Sizes S Sy 5; Sm1 Su
M

Figure 2. Multiproduct batch problem.
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Figure 3. Comparisons of IGA with other GAs for multiproduct batch '|"Li = maxi
u

example ¥ = 3, N = 2). |

Table 2. Comparison of the Statistics of Four Different GAs for the T = t
Multiproduct Batch Example (M = 3, N = 2) Li = Maxty;
IGA Qi
GA  GA+IF  GA+local (GA+IF+local) B: =T,
average 43370 41502 39799 38499 H
standard deviation =~ 1901.8  2577.1 1708.5 7.689B0 12 S‘J
number of function 25905 25198 28598 30867 U__ o o
evaluations B = min | Q;, min S (14)
J

reinsertion approaches are performed. Furthermore, a local
search in every, generations, to find more-feasible solutions,
is implemented as shown in Figure 1.

The termination criterion is used to stop the optimization . L
process. In our cases, when a given maximum number of (1) M =3, N = 2. This case has been studied in many

generations is reached, the search process is stopped and tht()_’,revi.ous works (e.g., Kocis.and Grossn‘f&l&qgira and Bab#).
best solutions are returned In this example, the following values are implemented for the

IGA, as depicted in section 3. Dy = 50,J. = 200, maximum
number of generations 1000, andM, = 14. Without further
transformation of the problem, the same global optimum as that

Numerical experiments are conducted to show the validity provided in previous works is obtained, as listed in Table 1.
of our theory developed in the previous section. Five industrial Note that two different local optima, which may be of interest
scaled problems are solved. In section 4.1, three multiproductto the design engineer, are also provided by this algorithm, as
batch plant problems of different sizes are solved. Comparedlisted in Table 1.
with the original reports, the frequency of discoveries of the  Figure 3 gives the histories of the decreasing of the objective
global minimum is highly enhanced in the first problem and function, as a function of number of generations by IGA. Note
better optimum and alternative solutions are found in the secondthat the plot is based on the averages of 20 simulation runs. To
example. In section 4.2, the optimization of regulatory metabolic show the necessity of the modification of the traditional GA,
reaction network is solved without further variable transforma- IGA is compared with traditional GA (no IF, no local search),
tions. Other local optimal solutions that are of interest of design GA plus information-guided mutation (GAIF), and GA plus
engineers are provided by this approach. In section 4.3, a threedocal search only (GAlocal search). It is obvious that only
level pump network optimization problem is solved without the approach proposed in this work converges to a possible
variable transformations. global minimum with a satisfactory speed.

4.1. Multiproduct Batch Plant Problem. The following The comparison of the statistical properties of the “best”
multiproduct batch problem was initially studied by Grossmann solutions found by the four methods is shown in Table 2.
and Sargent.As shown in Figure 2N different products are ~ Compared with other GA methods, IGA yields the lowest
manufactured oM batch processing stages. In each sfadg average objective function values and much lower standard
units operate independently and all the units have the same sizedeviations (STDs). Furthermore, the average number of function
S; the time required to process one batch of productstage calls per run using our approach is 30 867, which is much lower
j is Tj. For each productd; is the size,n; the number of the than the data reported by a modified GA-based original wark.

whereH is the given period of timeg; and§; are appropriate
cost parameters5; >0, t; >0 are constants, and the term}é
S, andﬁJ are the given limits.

4. Case Studies
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Table 3. Possible Global Optimum and Two Local Optimal Solutions

N s B T C
. . 223 3000 1891.6 1974.7 379.75 770.31 727.52 3234623437 285 510
possible global optimum 211 2619.1 2328.1 2109.8 638.3 525.43
ocal onfimum 223 2898.8 2143.3 1939.6 354.99 816.83 771.34 3.2153 3.633 6.4586 319 360
P 221 2831.4 2494.7 2324.1 552.61 509.62 3.4808 2.2286

Table 4. Comparison of the Statistics of Four Different GAs for the
Multiproduct Batch Example (M = 6, N = 5)

the approach proposed in this work converges to a global
minimum with a satisfactory speed.

IGA The comparison of the statistical properties of the “best”
GA  GATIF GAtlocal (GAtIFFlocal) solutions found by the four methods based on 20 runs is shown
avergged devia 22%19115460 25%33135g 22922896%0 27%77%03? in Table 4. The four different GAs terminate in case the best
standard deviation . . y . L
number of function 51843 51809 78089 73075 fitness value of each generation does not change within the last

10 iterations. Compared to other GA methods, IGA yields the
lowest average objective function values, one-third or lower

(2) M = 6, N = 5. This problem was studied by Kocis and STDs, and the highest frequency of occurrence of possible global
Grossmafi.Originally, 22 variables and 61 inequality constraints Optimum. Furthermore, the average number of function calls
existed in this problem. The problem size is equivalent to solving P€r run using our approach is 73 075, which is only 8.8% of
4096 NLP subproblems. Cardosa et*aiplemented a SA  the original report (831 149 function calls) by Cardosa etal.;
approach with some modifications to the original problem to and the occurrence of possible global optimum is 95%,
solve this problem, and they reported the optimal and suboptimal compared with the value of 2.6% that has been given by Cardosa
solutions that are listed in Table*Zhey claimed that, although €t al?
the rate of discovery of the ill-conditioned possible global (3) M = 12, N = 8. An extension of the aforementioned
optimum is only 2.6%, they only implemented half of the problem toM = 12, N = 8 is studied in this section. By
constraints given by the original wofkpecause of the neglect  implementing mathematical programming, 40 variables and 217
of variable transformations. Hence, additional algebraic efforts constraints should be implemented. The problem size is
become unnecessary. equivalent to solving 2.4414 10° NLP subproblems (see, e.g.,

In this example, the following values are implemented for Goyal and lerapetritc). The problem parameters are set such
the IGA, as depicted in section 3.Dy = 50, J, = 400, the ~ thatVj = 1000 , V{’ = 10000. For other parameters, the
maximum number of generatiors2000, andv, = 14. Without reader is referred to Appendix B of the original waik.
further transformation of the problem, 22 variables and only  In this work, the following values are implemented for the
61 constraints, the possible global optimum, which is consistent IGA, as depicted in section 3.7Dy =300, J. =300, the
with the original work by Kocis and Grossmémand one local maximum number of generatiors2600, andVl, = 14. Without
minimum, are also obtained, as shown in Table 3. further transformation of the problem, 40 variables and only

Figure 4 gives the history of the decreasing of the objective 193 constraints, which is fewer than the original regdrye
function, as a function of the number of generations by IGA. implemented. The possible global optimum and three nearby
Note that the plot is based on the averages of 20 simulation local optimal solutions that have been discovered by IGA are
runs. To show the necessity of the modification of the traditional listed in Table 5.

GA, IGA is compared with traditional GA (no IF, no local Again, Figure 5 gives the histories of the decreasing of the
search), GA-IF, and GAtlocal search. It is obvious that only  objective function, as a function of the number of generations,

evaluations

Table 5. Possible Global Optimum and Two Local Minima Discovered by IGA
N S B T C

22222 10000 5949.4 6582.3 1265.8 1829.3 4.153.46.2 1:908°
. . 11112 6219.57721.55319.1 1662.9 2127.7 3428525
possible global optimum 21 6036.5 5674.8 7649.6 1382.11091.3 3.22.15
7150.7 6984.4 7649.6 1265.8 2417.8
Local Optimums
22322 10000 5949.4 6582.3 1265.8 2032.1 3.83.46.2 1.9345
No. 1 111 6909.3 7721.5 5627.5 1852.8 2127.7 344227
: 1211 6706.1 6096.4 8522.7 1535.4 1172.4 3.234
7966.9 7781.6 8522.7 1265.8 2557.9
32322 9885.7 5881.4 6507.1 1251.41782.4 3.83.26.2 1979
No. 2 111 6131.7 7633.3 5258.4 1567 2103.4 3428525
: 1221 5882 5347.3 7208.1 1362.6 1028.3 3.22.15
6738 6581.3 7208.1 1251.4 2390.2
22323 7960.3 4735.8 5239.7 1007.6 1452.2 3.23.45.95 2:036°
No. 3 21113 4937.4 6146.5 4232 1276.6 1692.8 2.22.11.4167
: 22 4792.2 4356.5 5872.5 1097.2 837.79 2.12.15
5489.5 5361.9 5872.5 1007.6 1923.7
Table 6. Comparison of the Statistics of Four Different GAs for the Multiproduct Batch Example M = 12, N = 8)
IGA
GA GA+IF GA-+local (GA+IF+local)
average 2.160% 10C° 2.1773x 1C° 2.0822x 1C° 1.9648x 10°
standard deviation 81577 96379 1480700 47598
number of function 41463 41428 63098 91984

evaluations
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¥ 10° fitness value of each generation does not change within the last
42 L 10 iterations. Compared to other GA methods, although IGA
GA requires a slightly higher number of average function calls per
GAHF 1 run, it has the lowest average and second-lowest STD of the
Ga+Local objective function values.
IGA . 4.2. The Regulatory Metabolic Reaction Network Prob-

lem. In this section, the same example that was studied by
i Hatzimanikatis et al.is studied. It involves yield optimization

in xanthine monophosphate (XMP) and guanosine monophos-
phate (GMP) production. As shown in FigureXg,represents
the concentration of the metaboljt§ = 1, ..., 4),P, represents

the amount of manipulated variadl€l = 1, ..., 6), the dashed
lines denote inhibition, and dashedotted lines denote activa-

. tion. The S-system representation allows for the description of
e © 3 biochemical systems by nonlinear models of power-law form.
The S-system representation of the aforementioned pathway

Objective function value

2‘80 200 00 60 80 100 120 14100 1600 1800 2000 IS
Mumber of generation
) . . . dX
Figure 4. Comparisons of IGA with other GAs for multiproduct batch 1_ —0.5y—0.5 0.5y, —0.1y/—0.2y,—0.250.650.4
ex%\mple W= G?N =5). P dt 900X, 5)(4 P, — 10X; 5xz X3 Ky P 6F’3
x 10° dX, — 7.34X0-308,~0.062~0.162 —~0.150.375,0.2450.385
4T T ' ' ' ' TS 3 4 PPy Ty
sl _ 43,860 %, O PR 4pR°
s | e dx
= L! GA+IF J 3 _ 0.409,—0.38750.455 0.0414,0.43,,—0.01450.28
ER o o = 27 50382455 — 0.036x 9 X3 43K, * 1P}
2 Yo — IGA
g 4 o | dX, 0.041y,—0.39950.405 —0.026y,0.40~0.26
2 | ot = 18.03G7%,” 2495 — 0,143K; 2% 3P
% s . -
3 b SettingY; = In X;, the optimization problem becomes
3r 1 B |
' P=1 (fori=1, ..., 6) (15)
25F e o 1
e e P N max (y4)
2+ 1
I L L I L I s.t.—0. + 0.1y, — 0. - 0. — Z — Z € +
200 400 600 800 1000 1200 1400 1600 Vi Y2 ¥s ¥, 1133 1414

0.6251651y1 + 0.62,655Y, + 0.62,56,3y3 + 0.62,46,,, +
Figure 5. Comparisons of IGA with other GAs for multiproduct batch 0426300, + Wiy — 0600, — 0.0, = —4.4998
example ¥ = 12,N = 8). 0.308/, — 0.48%/, + 0.17 %, + 0.4y, — 0.372,16,0y; —
0.37295Y> = 0.372,5 533 = 0.372p€205 —

0.24%3463095 — 0.38%5¢433 + 042556535+
0.62 €64 + 0.3, + 0.248n,0, + 0.385W,0, —

0.4n,0; — 0.61,0, = 1.7863

~0.14y, + 0.409, — 0.817%, — 0.014, —
0.45%, ¢cs + 0.28 7265y, — 0.28N,0; +
0.455N,0, = —4.3212

0.04%y,+ 0.026/, — 0.799, — 0.40%,€5.y, +
0.2674€ 43y — 0.26,0, + 0.405V,0, = —4.5122

In(4.9) = y, = In(6.0)

bounds ory; (forj = 1, 2, 3): In(192) > y, > In(234)
In(2176)= y,; = In(2660)

Number of generation

Figure 6. Superstructure of the XMP and GMP synthesis pathway.

based on the average of 20 simulation runs. The four curves in - poynds o (forl=1,..,6): InPH) =P, = In(P)

Figure 5 again represent the cost at a certain generation using (16)

the method with or without information entropy and local search.

Once again, only the approach proposed by this work discoverswherew, (I =1, ..., 6) and 213,214, Z21, 222, 223, Z24, Z34, Z43, Z53,

the global minimum with a satisfactory speed. The statistical zss} are binary variablesy; j = 1, ...,4) andqg (I = 1, ..., 6)
comparison of the four methods based on 20 runs is shown inare continuous variables, L represents the lower bound, and U
Table 6. The four different GAs are terminated in case the best represents the upper bound.
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Table 7. Values of Variables in the Original Solution and IGA Solutions +5

W (W1—We) Az13, 214, 201, 222, 223, 204, Z34, 243, Z53, Z64) q (d1—0Ce) X4
original solution 111111 0101110001 1.6094 1.6094-0.3634 1.6094-0.4354 1.2513 55015.6
IGA solution 1 110100 0101110001 1.4722 1.2906-1.3646 0.42012 0.172090.29841 52575
IGA solution 2 111010 0101111001 1.2309 1.6094-1.6094 0.60501-0.23505—0.17344 65121
IGA solution 3 110001 0111110101 1.6094 1.6094 1.0534 1.5246 1.6027 0.29228 56613
IGA solution 4 111011 0101110101 1.534 1.6072-0.45455 0.77799-0.20221 0.65065 69633
IGA solution 5 110100 0100110001 1.126 1.47270.1548 0.4643 0.03611.2034 49811

In this example, the following values are implemented for Table 8. Comparison of the Statistics of Four Different GAs for the

IGA: Dy = 1, J. = 400, the maximum number of gener-

Regulatory Metabolic Reaction Network Example

IGA
<4—— P14 GA GA+IF GA+local (GA+IF+local)
average 8.9284 10.684 10.375 10.951
standard 3.4368 0.46561 1.3125 0.32403
. Lab el deviation
-~ number of 67359 67358 79594 78670
3 iﬂ— P2+ function
evaluations

&
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Figure 7. Network structure of solution 4.
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Figure 9. Comparisons of IGA with other GAs for the regulatory metabolic

Mumber of generation

reaction network example.

ations= 2600, andVl, = 14. After 2600 generations, several
local minima with different network structures are found. As
discussed in the work of Hatzimanikatis et alit, is very
important to find a feasible solution with the least modi-
fication from the original structure of the network. Without
further transformation of the original problem of eq 15, using
26 variables (compared to 42 variables of the original work)
and 13 constraints (compared to 77 constraints of the original
work), 5 local optima are discovered and are listed in Table
7.

Figures 7 and 8 show network structures of solutions 4 and
5, which are listed in Table 7. The values of the varialbled
=1, ..., 6) {z3, 214, 221, 202, 203, 204, Z34, 43, Zs3, Zea}, O (I =
1, ..., 6), and in each solution are shown in Table 7. Compared
to the original yield reported by the work (i.e4 = 55015.6),
it is clear that solution 4 gives 26.6% higher yields. However,
solution 4 requires one more modification on the metabolic
network, as shown in Figure 7, although less modifications on
the enzymes are required. Furthermore, some network structures,
such as solution 5 suggested by this work, have less modification
from the original metabolic structure, and this is of the interest
of design engineers, as shown Figure 8, although slighty less
product yield can be achieved, as shown in Table 7. Note that
each “1” ofw andzin Table 7 indicates a modification to the
original structure. As shown in Table 7, most solutions obtained
uaing this approach have less modification to the original
structure.

Again, Figure 9 gives the histories of the decreasing of the
objective function, as a function of the number of generations,
based on the average of 50 simulation runs. As shown in Figure
9, the performance of IGA is superior to other GAs. The
comparison of the statistics of all four approaches is shown in
Table 8. Compared to other GA methods, although the proposed
method yields the higher average number of function calls per
run, the statistics of the objective function values are much
superior to other GAs.

4.3. Pump Network Problem.A schematic plot of a three-
level pump network configuration is given in this section. As
described by Westerlund et &.the problem can be summarized
as follows. Select the best pump or configuration of pumps
coupled in series and/or parallel. Given the pressure rise (total
head), as a function of the capacity of a set of centrifugal pumps,
as well as the total required pressure rise and total flow for the
configuration to be selected, the MINLP problem can be
expressed as follows:
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w, \? wq |, 2 Table 9. Comparison of the Statistics of Two Different GAs for the
Ap; — 629———| — 0.69 v, +0.0116,°=0 Pump Network Problem
wm wma
GA+local search IGA
@, |? @2 2 avera
_ _ . _ ge 156470 135890
Ap, Zliwmaﬁ) 2'95(((0[“3“) »+0.0119,"=0 standard deviation 15758 4992.5
number of function evaluations 55374 47958
w3 |2 W3 | 2
Ap; — 361(_w a) - 053((_&) ax) i3+ 0.009465" =0 on the averages of 50 runs. Unlike the previous cases, traditional
m m GA and GAtHIF approaches failed to discover the global
X T X+ X = minimum, because of the importance of the local search to

1
) . . guarantee the feasibility of the new generation, as mentioned
4Ny = xVig=0  (fori=1,2,3) at section 3.6. These two cases are not included to compare the
_ . performance of different GAs. As shown in Figure 10, again,
APz — ApiNa =0 (fori=1,2,3) the performance of IGA is superior to the GAocal search
case. Table 9 reveals that IGA is superior to the-Gdcal

W~ e < 0 (fori=1,2,3) search in the average and STD of the solution of 50 different

P.—Pnaxiz =0 (fori=1,2,3) runs.
Ap,— AP,z =0 (fori=1,2,3) 5. Conclusion
—Vez =0 (fori=1,2,3) ~ The most general formulation of a chemical process design
(a0 (=129 (D e e o e e

wherez represents binary variables, which denote the existencealgorithm (IGA) that substantially improves the efficiency of
of leveli; Ny € {0,1,2,3 andNg € {0,1,2,3 are the integer  the traditional genetic algorithm (GA) is derived. This approach
variables, whereN, denotes the number of parallel lines and implements the information theory to refresh the population as
Ns denotes the number of pumps in series at lévelc [0,1], prematurity occurs. A modified local search is performed to
9 C [0,Viod, wi C [0,wmax], Pi C [0,Pmaxi] and Ap; C [0,APyqf determine the more-feasible solutions in a constant period of
are continuous variables, whexgis the fraction of total flow generations. Five popular numerical examples are solved using
going to leveli, #; the flow rate on each liney; the rotation this approach. In this work, the proposed approach is easier to
speed of all pumpsP; the power requirement, andp; the implement without additional algebraic effort than some math-
pressure increase at levielThe details of the problem can be ematical programming approaches are. Besides, this approach
found in section 12.5 of Floudas et3INote that no variable provides physically meaningful local optima for the consider-
transformation is implemented in this work; hence, no additional ation of the design engineer. By comparing the results of five
variables or constraints are added. Algebraic operation is examples, IGA demonstrates superior performance to the
significantly reduced. existing stochastic MINLP approaches. The simulation results

In this example, the following values are implemented in the also showed that this novel optimizer is valid and efficient for
proposed IGA:Dy = 100,J. = 150, the maximum number of  real applications.
generations= 1200, andVl, = 14. The possible global optimum
with the objective function value 128 894 FIM/yr is obtained, Nomenclature
correspondingta=[110], Np=[210],Ns=[120],x= )
[0.91429 0.085714 0 §y = [2855.1 2950 0]P = [28.27 2.63 0], a = a scaling factor
and Ap = [400 200 0]. B; = the size of product (fori = 1, ...,N)

Figure 10 shows the objective values, as a function of the C = the capital cost of the plant
number of generations, using two different types of GAs, based d = number of integer variables
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Dy = a constant set as a threshold

e = number of continuous variables
= information entropy of a set

E; = information entropy of a variablg; (fori = 1, ...,

E' = a set of lower entropy

F = objective function

gi = inequality constraint (for = 1, ..., Ny)

hj = equality constraint (foj = 1, ..., Ny

H = the given period of time

| = number of variables

J = number of individuals in each population

J. = the number of generations to perform each local search

ki = penalty parameter (fgr= 1, ...,m)

K = number of mutation variables

L; = lower bound of variable¥, (fori =1, ...,

m = number of constraints to be penalized

M = number of processing stages in series

Mp = population size

n = number of binary variables

n; = the number of the batches for produdfori = 1, ...,

N = number of products

Ng = number of inequality constraints

Nr = number of equality constraints

N; = number of parallel units for stage(j = 1, ..., M)

Np, = the number of parallel lines at leviebf the pump network

Ns = the number of pumps in series at levebf the pump
network

P; = the power requirement at levebf the pump network

Api = the pressure rise at levieat leveli of the pump network

P, = the amount of manipulated varialldfor | = 1, ..., 6)

Pm = mutation probability

P; = the probability that the variabl¥; takes the values in
subspaces; (fori =1, ..., andr =1, ...,R)

g = the logarithm ofP, (for | =1, ..., 6)

Qi = the total production for produdgt(fori = 1, ...,

R = number of sections of the variable divided

s = uniform random number of variablgs € {—1,+1}, i =

)|

s.i = subspace of variables (for= 1, ...,
= [L.u]]

§; = constants

§ = the size of product for stage(for j = 1, ...,

tj = constants

Tj = the time required to process one batch of produict
stagej

T.i = the maximum cycling time for produci(fori =1, ...,

)

)

N)

N)

| andr =1, ...,R),

M)

N)

U; = lower bound of variable¥; (fori =1, ...,1)
V = a vector of variables
v; = value of variable in sectionk (fori =1, ...,1)

v = the flow rate on each line at levebf the pump network

Vij = theith variable of thgth individual

Vix = a variable of a reference individual

VP2 = parents of variablé (for i = 1, ...,1)

VMUI = variablei after mutation stage (for— )

UOJ(V) = the amount of violation ofith constraint by the
candidate solutioV (for j =1, ...,m)

w; = binary variables (fot = 1, ..., 6)

X = the fraction of total flow going to level of the pump
network

X = a vector of continuous variables

X; = the concentration of the metabolitéfor j = 1, ...,

Y = a vector of integer variables
= In X

%’y = upper bound on variablesandy

4)

X" yr = lower bound on variables andy

Z = a vector of binary variables

z = the existence of levdl of the pump network
zj = binary variables

Greek Letters

j, B; = appropriate cost parameters

wi = the rotation speed of all pumps at levebf the pump
network

Q = set of corresponding variables that is selected to be mutated
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