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Abstract—Chemical processes are nonlinear. Processes with extremely high nonlinearities,
such as neutralization and high-purity distillation, are very important and need special
consideration. The basic problem with such nonlinear processes is that the performance of
model-based control is very sensitive to model inaccuracy. It seems that robust control is
impossible with pure model based control algorithms. Model predictive control (MPC) has
been widely implemented in the chemical industry. However, not very many successful cases of
implementing nonlinear models can be found in the literature. In addition, when such a model
is inaccurate, high-frequency oscillation appears across the sensitive region. On the other hand,
an accurate model is expensive and frequently impossible since operating data in the sensitive
region are scarce. The above factors lead to unacceptable control results. To solve the above
problem, we propose a combined global/local control (GLC) in which, when disturbances occur,
the global control (GC, MPC in this study), a nonlinear controller, steers the process under
control into or near the sensitive region; then, the local control (PI in this study) takes over and
finally settles the process at the desired set point. Both simulation and experimental results
show that such a combination control is economical. In this study, unlike our previous research,
a PI controller was implemented, because PI control can be easily tuned for the sensitive region
and a model of moderate accuracy for other non-sensitive regions can be built with much less
effort.

Key Words : Model inaccuracy, Global/local control, Model predictive control, Sensitive
nonlinear system, PI controller
INTRODUCTION

Model predictive control has been mature for
many years. In recent years, many simulations (e.g.,
Ricker and Lee, 1995; Manner et al., 1996) and ex-
perimental works (e.g., Halggblom, 1993; Wright
and Edgar, 1994) showed that nonlinear predictive
control can be a better control mode than a linear
control. In addition, MPC is important because it
provides a general control mode in which material
and/or energy conversion of equipment and control
devices can be considered as a whole in the design of
a control system. The basic idea behind MPC is to

1 ;H<j~ f‘[l
[21 lgﬁl ]'3;',%
Bl ﬁﬁﬂﬁl%ﬁ , To whom all correspondence should be addressed
[4] /@;EI e

use a model to forecast the future output of con-
trolled variables and calculate the manipulated ac-
tions, in order to minimize the difference between
the predicted trajectory and forecasted output. In the
case of a nonlinear system, it is intuitive to imple-
ment a nonlinear empirical model, such as an artifi-
cial neural network (ANN) model (e.g., MacMurray
and Himmelblau, 1995; Hussain, 1999), to pursue
better performance. However, the performance of an
MPC scheme is closely related to the accuracy of the
process model. Very poor performance occurs if the
system is very sensitive to modeling error as pointed
out by the authors (Tsai et al., 2002). Since modeling
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error is inevitable, the following two steps are neces-
sary to guarantee the performance of MPC: (1) iden-
tify the inaccuracies of the model; (2) improve the
robustness of the MPC. Lin and Jang (1998) pre-
sented a systematic ANN approach based on infor-
mation theory in order to cope with the above men-
tioned problems. However, it may be very expensive
and even impossible to use such an approach because
of the high expensive of on-line experiments. In this
work, we present appropriative control schemes with
comparatively low experimental cost to solve the
above difficulties.

Krishnapura and Jutan (2000) developed a neu-
ral adaptive controller (NAC) to accommodate mode
uncertainty. Their NAC is computationally fast and
works as a general auto-tuning feedback controller,
thus it does not require any process knowledge. For a
nonlinear process with fast system responses, how-
ever it turns out to be unsatisfactory (Tsai et al.,
2002).

In many chemical processes, such as neutraliza-
tion and distillation, severe nonlinearity and high
sensitivity exist. In the past, some researchers (e.g.,
Astrom and Hagglund, 1988; Williams et al., 1990;
Chan and Yu, 1995) used classical control theory,
e.g., PID (proportional-integral-derivative control)
theory to control the pH system. A PID controller
works well for a linear system, but for a nonlinear
and sensitive system, its performance is poor. It has
been reported that ANN models work well in pH
control processes (Palancar et al., 1996, 1998).
However, in the case of a highly uncertain and sensi-
tive model, it is quite difficult for an MPC to track
set-point changes. Mahmoud and Mohammad (2000)
and Ylostalo et al. (2001) used multiple models
through controller switching to achieve better per-
formance. Nevertheless, until now, few satisfactory
results for pH processes have been reported in the
literature. The reason is that a neutralization process
always operates in a very sensitive region where a
small change in a manipulated variable will have in a
tremendous effect on the controlled variable. This
phenomenon happens all the time in the region about
the equivalence point. A traditional proportional-
integral (PI) controller can be tuned in the sensitive
region using a small gain, as reported by Chan and
Yu (1995), and Ho et al. (1995). However, such a
controller may become sluggish if the process is op-
erated in non-sensitive regions. Some studies (e.g.,
Yeo and Kwon, 1999) use gain-scheduling technique
to solve this problem. Nonlinear MPC with robust
performance is desirable. The problem with a
nonlinear MPC is that of finding an “accurate” em-
pirical model that can cover a sufficiently large re-
gion of operation and to be extremely accurate in the
sensitive area. Such models, however, are expensive
and frequently impossible to employ since operating
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Fig. 1. Diagram of the global/local control system.

data in the sensitive region are scarce.

To solve the above problem, Tsai et al. (2002)
developed a robust model predictive control scheme
through regional knowledge analysis of ANN. They
proposed a coordinate controller that harmonizes
each other to make the final control decision. The
coordinator is composed of an MPC and an NAC.
The concepts behind the controller are novel and
simulation results obtained have been positive, but
experimental results have not been encouraging be-
cause NAC is very sensitive to measurement noise.
Since PI controllers have been successfully used in
industrial, we replace the NAC with the PI controller
to construct a combined global/local control system
to handle the pH control system. In the combined
controller, the MPC is viewed as a global control,
and the PI controller is regarded as a local control.
When a disturbance occurs, the global control is used
to steer the process under control into or near the
sensitive region; then the local control takes over the
task of finally settling the process at the desired set
point. Both simulation and experimental results
showed that such a combination is more economical,
because PI control can be easily tuned for a sensitive
region and a model of moderate accuracy for other
non-sensitive regions can be built with much less ef-
fort. Furthermore, it should be noted that this is the
first study, in which experimental results were ob-
tained using a global/local controller.

THEORY
The global/local combined controller

A combined global/local control system com-
prises an MPC and a PI control as depicted in Fig.1.
Despite the complexity and nonlinearity of the sys-
tem, the design of an ANN model only requires the
input/output data. In order to investigate the dynamic
behaviors of a pH control system, firstly, an ANN
model can be implemented instead of first principal
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model. Next, an optimizer based on the ANN model
can be used to generate the controller actions of the
global control model. That is to say, we can adopt an
MPC (Tasi et al., 2002) containing an ANN model
and an optimizer as the global controller. The objec-
tive function J of the optimizer is as follows:

k+p-1
{ > (ysp(t+1)

t=k

Min
Auge (k),Auge (k+1),...,Auge (k+c)

t=k

k+c
= Yt + )+ hge (1) + ZW(A”Gc(f))z} (la)

subject to

uGC,mm = Uge < uGC,max (1b)
2
AuGC,mln < AuGC < AuGC,max

where Vep is the set point value, y is the controlled
variable, u,. is the manipulated variable of the
global controller, uge i, and YGe mar @€ the lower ad
upper limits, respectively, of u,., w is the penalty
factor used to suppress excessive control actions, p is
the prediction horizon, ¢ is the control horizon, and
ﬁ oc\D) 1s the deviation value between y(¢) and y, ., (¥),
ie.,

hee () = y(8) = yypc () (2)

As indicated in our previous work (Tasi et al.,
2002), an MPC is nearly perfect if the model/plant
mismatch is negligible. However, the results is usu-
ally in a longer settling time if the plant/model mis-
match becomes larger, i.e. the robust problem be-
comes important. According to the analysis of many
authors (e.g., Ricker and Lee, 1995; MacMurray and
Himmelblau, 1995), the robust control issue exists
on a case-by-case, and hence there exists no general
rule exists. It is necessary to provide an extra assis-
tance to support the MPC control to solve this prob-
lem.

It is intuitive to seek an easily tuned controller
as a partner for the MPC controller. Of course, a
classical control, for example, a PI controller is the
primary candidate rather than an NAC controller.
The major reasons are: (1) it is the most widely used
controller in most industries, and (2) the tuning rule
of a PI controller is better known than that of NAC.
In the study, we implemented a PI controller as the
local controller in our combined control approach as
follows:

_ Ty
u; (1) —KC[1+ T,(l—z_l)J y

(Ysp+1)—y(+1), 3)

where K¢ is the proportional gain, 7, is the integral
constant, and Ts is the sampling period. The disad-
vantages of an NAC controller will be shown in our
experimental results discussed later (Fig. 12).
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Fig. 2. Diagram of the simulated neutralization CSTR.

For the proposed combined control system, a coordi-
nator is inserted into the scheme to conjugate the two
controllers. In the following section, a coordinator
will be introduced.

The coordinating rule

The concept behind the Parzen-Rosenblatt
(Haykin, 1999) probability density function is used
to estimate the reliability of the model. For simplic-
ity, the probability decision factor ¥ is defined as

a

Y= \P(.f{x}(xnew)) = ﬁ]({x}(xnew) - bh—a
a < fia(X,e,) < b, 4)

where x,.,, represents the input variables of the ANN
model, and a and b are constants. From Haykin’s
work (Haykin, 1999), fi.1(x,,) is defined as the
probability density estimator from the new event x,,,,
based on the training data set. Then a coordinating
rule is defined and used to make the final decisions
regarding the combined controllers system:

ue =Y xuge +(1-Y)xu;c, ®)

where u . is the control action of the combined
global/local control system.

B

The neutralization system

Neutralization reactions are widely used in
chemical industries. The pH control system has been
widely studied because the model benefits from
highly sensitive and nonlinear operating conditions.
Many researchers have tried to solve the pH control
problem, but their results have not always been ac-
cepted by chemical industries. In this paper, we will
use an example which was researched by Palancar et
al. (1996, 1998) and is depicted in Fig. 2. The simu-
lated pH control system is composed of two inlet
streams and one outlet stream in a continuous stirred
tank reactor (CSTR). There are two inlet streams:
one is the acid flow, Q,4, an aqueous solution consist-
ing of acetic acid and propionic acid; the other is the
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base flow, Op, an aqueous solution consisting of so-
dium hydroxide. The outlet stream is Q. The neu-
tralization reactions are as follows:

AcH = Ac +H', (6)
PrH = Pr+H’, (7)
NaOH = Na'+OH, (®)
H,0=H'+OH . )

For the CSTR, the material balance equations
can be derived as

dC,
0,Copin =0Cpy +V dI;rH (10)
dc,,
0,4Co acn =OCacn +V% (11)
dCy,
O5Co naon = OCnaon + V% (12)

where, Cyqy, Cpyy» and Cy,op are the concentrations
of the components AcH, PrH, and NaOH, V is the
volume of the reactor. Then the pH value can be de-
rived from the dissociation equilibrium:

Cacn Cot, o0H-19
10?1 107PH
1+ 1+
KACH KPrH
= Cryon +107°1 (13)

where the ionization constants Ka.u =10*"and Kpn
=10"**" at 25°C. At this temperature, the system has
an equivalence point around pH = 8.9.

EXPERIMENTAL SETUP

The experimental instruments used in the neu-
tralization system include: (1) a pH sensor, (2) a pH
transmitter, (3) an agitator, and (4) metering pumps,
as depicted in Fig. 3. An aqueous solution consisting
of acetic acid, propionic acid, and sodium hydroxide
were prepared for the experiment. Table 1 shows de-
tailed information about the above instruments and
chemicals. The initial states of the pH control system
are given in Table 2. Figure 4 shows the real titration
behaviors observed in the neutralization experiment
and demonstrates the sparseness and sensitivity
around the regions of the equivalence points. The
aim of the experiment was to effectively control a
nonlinear, sensitive system. Therefore, we chose the
pH control system shown in Fig. 2 as our experimen-
tal model. For simplicity, we let the pH value be the
controlled variable, we regarded the base flow rate
Op as the manipulated variable, and we viewed the
mixed acid flow rate O, as the disturbance variable.
The pH control was a single input and single output
(SISO) system. In order to maintain the liquid level

Table 1. Instruments and chemicals.

pH sensor: HI1090T, HANNA Instruments

pH transmitter: HI18711E, HANNA
Instruments

agitator: HI190M/U, HANNA Instruments

metering pump: version 30E/32E,LANG
APPARATEBAU GmbH

acetic acid

Instruments

) propionic acid
Chemicals . .
sodium hydroxide

pH standard solution

Table 2. Initial states of the pH control system.

pH value 6.5

Co,ari 1.0 mol/L
Copna 1.0 mol/L
CoNeoH 2.0 mol/L
(o 14.2 mL/min
Op 14.0 mL/min
(0] 28.2 mL/min
V 1.0L

acid

product

P-1
2]

Base

E-3

computer

Fig. 3. Diagram of the neutralization pilot plant.
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Fig. 4. Titration curve of the neutralization pilot plant.

fixed in the CSTR, the output stream was imple-
mented as the overflow of the reactor.
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Fig. 5. The training data from a PRBS generator.
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Fig. 6. The training results for the ANN model.

The data for training the ANN model were gen-
erated by changing the set-point values for the PI
controller (K¢=5, 7, = 150), based on a pseudo ran-
dom binary sequence (PRBS). Note that the PI set-
tings were obtained using a simple Ziegler-Nichols
reaction curve approach. The sampling and control
actions were performed every 10 s. The set-point
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Fig. 7. The testing results for the ANN model.

values y, of the pH control system had to fully
cover the range around the equivalence point pH =
8.9, s0 ygp was calculated as

yep =8.5+3.5k, (14)

where |k| <1and the value of & is obtained from the
PRBS generator. Equation (14) produces ygp values
between pH = 5 and pH = 12. Figure 5 shows the
training data. Figures 6 and 7 show the training and
testing results obtained with the ANN model. From
these two figures, it is observed that the prediction
accuracy in the equivalence region is worse than that
in the non-equivalence regions. This is because
fewer experimental data exist around the equivalence
region. We solved this difficulty with the help of a PI
controller rather than by improving the model accu-
racy.

RESULTS

In this section, we will use the results obtained
simulation and experimental results demonstrate the
superiority of the combined global/local controller.
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Fig. 8. Dynamics of the simulated pH system under MPC
while a series of step changes in the pH set point
occur.

Simulation results

Before discussing the experimental study, we
will examine the results obtained with the simulated
pH system. Figure 8 displays the performance of the
MPC, which employed an ANN model trained with
data from the simulated plant. Note that the parame-
ters of the MPC were implemented based on our
previous analyses (Tsai et al., 2002). The simulation
results show that the simulated plant could not be
controlled well around the equivalence point. In Fig.
9, we show that the PI controller could be tuned to
control the simulated pH plant under set point
changes. Note that the PI controller was tuned so as
to be stable around the equivalence point; hence, the
PI controller could not perform well beyond that
range. Also note that the PI controller was very con-
servative since the system behaved in a very sensi-
tive manner around that point; and hence, the closed
loop system behaved sluggishly other around set
point values. In Fig. 9, we also compare the servo
behaviors of the pH system obtained by implement-
ing the PI, nonlinear MPC, and combined approach
derived in this paper. As expected, the combined ap-
proach achieved faster response than the PI control-
ler and was much more stable than the nonlinear
MPC. Figure 10 compares the regulatory behaviors
of these three controllers based on a step changes in
the acid input. Once again, the combined approach is
shown to be superior to the PI and nonlinear-MPC.

Experimental results

The simulation results show the superiority of
the proposed combined controller. The verifying ex-
periments performed on the pilot plant will be dis-
cussed in this section. In the experiments, particular

12 : . : \ ;
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0 1000 2000 3000 4000 5000 6000 7000

Time(s)

Fig. 9. Dynamics of the simulated pH system controlled by
means of PI, MPC, and GLC, respectively, while a
series of step changes in the pH set point occur.
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Fig.10. Dynamics of the simulated pH system controlled by
means of PI, MPC, and GLC, respectively, while a
series of disturbances (acid flow) are introduced.
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Fig. 11.Dynamics of the pilot plant under PI control (K = 3,
7; = 150) while a series of step changes in the pH set
point occur.

attention was paid to the following two different do-
mains: one was the highly sensitive, nonlinear region
located around pH values ranging from 6.5 to 10.5;
the other was the less sensitive region around pH <
6.5 or pH > 10.5. The initial experimental states are
given in Table 1, and the period for sampling and
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Fig. 13.Dynamics of the pilot plant under MPC while a series
of step changes in the pH set point occur.

controlling actions was 10 s. Firstly, we will com-
pare the experimental results achieved with the
above three control strategies for a series of step
changes in the set points of pH values. With the sin-
gle PI controller, Fig. 11 shows that satisfactory per-
formance was achieved even though there was
a bit of oscillation around the nonlinear region, but
there was a longer settling time when the set point
was far away from the equivalence point. Figure 12
shows the experimental servo behavior of this pH
system with an NAC controller. Unlike the simula-

tion obtained in our previous study (Tasi et al., 2002),

the experimental results obtained here show that the
NAC is very sensitive, and that much effort is
needed to tune it. This also explains why we imple-
mented the PI controller, as shown in Fig. 11, a local
controller. Through the training and testing of an
ANN model as depicted in Figs. 6 and 7, we built the

MPC for the pH control system. As shown in Fig. 13,

the MPC quickly tracked the change of the set point
in the less nonlinear region, but this led to poor per-
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Fig. 14.Dynamics of the pilot plant under the combined
controller while a series of step changes in the pH set
point occur.

5 I 1 L i i 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Time(s}
Fig. 15.Dynamics of the pilot plant under PI, MPC, and GLC,

respectively, while a series of step changes in the pH
set point occur.

formances around the sensitive regions. However, as
shown in Fig. 14, much better performance was
achieved with the combined controller, whether the
set point was in the nonlinear region or not. Note that
the region knowledge index and design factor were
derived in Eq. (4). In Fig. 15, the experimental ob-
tained with the above three control schemes are
compared. In all the regions, including the sensitive
region, the controlled variable was closely tracked by
the combined controller. Comparing Fig. 15 and Fig.
9, reveals that the responses obtained in the experi-
ments were much noisier than those obtained in the
simulation, and with our experimental results shown
in Fig. 12 reveal that the NAC is not suitable for real
applications.

Finally, the rate of acid flow was changed to
evaluate the regulatory properties of these three con-
trollers, and the experimental results, as shown in Fig.
16, clearly confirm the superiority of the combined
controller. Figure 17 displays the results of a 36-hour
reliability test performed with the combined control
algorithm in a pilot neutralization plant.
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Fig. 16.Dynamics of the pilot plant under PI, MPC, and GLC,

respectively, while step changes in the disturbance
variable (acid flow rate) are introduced.
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Fig. 17.Record of a 36-hour reliability test for the combined
global/local algorithm as used in the pilot neutraliza-
tion plant.

CONCLUSION

This study solved the problem that occurs when
the operation point is located in a highly sensitive
region surrounded by non-sensitive regions. This
problem is typically occurs in pH processes and
high-purity distillation columns. The proposed con-
trol system consists of a local controller that works
in the sensitive region and a global controller that
works in regions with normal sensitivity. The central
idea is that when a disturbance kicks the operation
out of the sensitive region, the global controller is
employed to bring the operation back to the bound-
ary of the sensitive region, where control is handed
over to the local controller, which is implemented by
combining the outputs from both the local and global
controllers. In the framework of combined global/
local control (GLC), the global controller can be

built with much less effort since its task is only to
push the operation from surrounding non-sensitive
regions to the boundary of the sensitive region. The
concept of GLC has been demonstrated using both a
simulated pH control process and a pilot neutraliza-
tion plant. Results obtained from both simulations
and experiments reveal the excellent dynamical be-
havirs of the GLC schemes.
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NOMENCLATURE

a,b constant in the probability density func-
tion

CacH concentration of acetic acid, mol/L

CNaoH concentration of sodium hydroxide,
mol/L

Cr concentration of propionic acid, mol/L

Co.acH initial concentration of acetic acid,
mol/L,

CoNaoH initial concentration of sodium hydrox-
ide, mol/L,

Coprrt initial concentration of propionic acid ,
mol/L,

fix) probability density estimator

hee value of deviation between y(f) and
Ymec(?)

KacH ionization constant of acetic acid

K¢ proportional gain

Kp ionization constant of propionic acid

0 outlet flow, mL/min

04 acid flow, mL/min

Os base flow, mL/min

Ts sampling period, s

t time, s

Uc control action of the GLC controller

UGe manipulated variable of the global con-
troller

Urc manipulated variable of the local
controller

vV tank volume, L

w penalty factor

Xnew new event

b% controlled variable

Ympc controlled variable of the MPC controller

Vsp set point

z backward shift operator
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Greek symbols

A operator of (1-z ")
b probability decision factor
7, integral constant, s

Abbreviation

ANN artificial neural network
GLC global/local control
MPC model predictive control
NAC neural adaptive control

PID proportional integral derivative control
PRBS pseudo random binary sequence
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