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Abstract─Chemical processes are nonlinear. Processes with extremely high nonlinearities, 
such as neutralization and high-purity distillation, are very important and need special 
consideration. The basic problem with such nonlinear processes is that the performance of 
model-based control is very sensitive to model inaccuracy. It seems that robust control is 
impossible with pure model based control algorithms. Model predictive control (MPC) has 
been widely implemented in the chemical industry. However, not very many successful cases of 
implementing nonlinear models can be found in the literature. In addition, when such a model 
is inaccurate, high-frequency oscillation appears across the sensitive region. On the other hand, 
an accurate model is expensive and frequently impossible since operating data in the sensitive 
region are scarce. The above factors lead to unacceptable control results. To solve the above 
problem, we propose a combined global/local control (GLC) in which, when disturbances occur, 
the global control (GC, MPC in this study), a nonlinear controller, steers the process under 
control into or near the sensitive region; then, the local control (PI in this study) takes over and 
finally settles the process at the desired set point. Both simulation and experimental results 
show that such a combination control is economical. In this study, unlike our previous research, 
a PI controller was implemented, because PI control can be easily tuned for the sensitive region 
and a model of moderate accuracy for other non-sensitive regions can be built with much less 
effort. 
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INTRODUCTION 
 
 Model predictive control has been mature for 

many years. In recent years, many simulations (e.g., 
Ricker and Lee, 1995; Manner et al., 1996) and ex-
perimental works (e.g., Halggblom, 1993; Wright 
and Edgar, 1994) showed that nonlinear predictive 
control can be a better control mode than a linear 
control. In addition, MPC is important because it 
provides a general control mode in which material 
and/or energy conversion of equipment and control 
devices can be considered as a whole in the design of 
a control system. The basic idea behind MPC is to 

use a model to forecast the future output of con-
trolled variables and calculate the manipulated ac-
tions, in order to minimize the difference between 
the predicted trajectory and forecasted output. In the 
case of a nonlinear system, it is intuitive to imple-
ment a nonlinear empirical model, such as an artifi-
cial neural network (ANN) model (e.g., MacMurray 
and Himmelblau, 1995; Hussain, 1999), to pursue 
better performance. However, the performance of an 
MPC scheme is closely related to the accuracy of the 
process model. Very poor performance occurs if the 
system is very sensitive to modeling error as pointed 
out by the authors (Tsai et al., 2002). Since modeling 
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error is inevitable, the following two steps are neces-
sary to guarantee the performance of MPC: (1) iden-
tify the inaccuracies of the model; (2) improve the 
robustness of the MPC. Lin and Jang (1998) pre-
sented a systematic ANN approach based on infor-
mation theory in order to cope with the above men-
tioned problems. However, it may be very expensive 
and even impossible to use such an approach because 
of the high expensive of on-line experiments. In this 
work, we present appropriative control schemes with 
comparatively low experimental cost to solve the 
above difficulties. 

Krishnapura and Jutan (2000) developed a neu-
ral adaptive controller (NAC) to accommodate mode 
uncertainty. Their NAC is computationally fast and 
works as a general auto-tuning feedback controller, 
thus it does not require any process knowledge. For a 
nonlinear process with fast system responses, how-
ever it turns out to be unsatisfactory (Tsai et al., 
2002).  

In many chemical processes, such as neutraliza-
tion and distillation, severe nonlinearity and high 
sensitivity exist. In the past, some researchers (e.g., 
Astrom and Hagglund, 1988; Williams et al., 1990; 
Chan and Yu, 1995) used classical control theory, 
e.g., PID (proportional-integral-derivative control) 
theory to control the pH system. A PID controller 
works well for a linear system, but for a nonlinear 
and sensitive system, its performance is poor. It has 
been reported that ANN models work well in pH 
control processes (Palancar et al., 1996, 1998). 
However, in the case of a highly uncertain and sensi-
tive model, it is quite difficult for an MPC to track 
set-point changes. Mahmoud and Mohammad (2000) 
and Ylostalo et al. (2001) used multiple models 
through controller switching to achieve better per-
formance. Nevertheless, until now, few satisfactory 
results for pH processes have been reported in the 
literature. The reason is that a neutralization process 
always operates in a very sensitive region where a 
small change in a manipulated variable will have in a 
tremendous effect on the controlled variable. This 
phenomenon happens all the time in the region about 
the equivalence point. A traditional proportional-
integral (PI) controller can be tuned in the sensitive 
region using a small gain, as reported by Chan and 
Yu (1995), and Ho et al. (1995). However, such a 
controller may become sluggish if the process is op-
erated in non-sensitive regions. Some studies (e.g., 
Yeo and Kwon, 1999) use gain-scheduling technique 
to solve this problem. Nonlinear MPC with robust 
performance is desirable. The problem with a 
nonlinear MPC is that of finding an “accurate” em-
pirical model that can cover a sufficiently large re-
gion of operation and to be extremely accurate in the 
sensitive area. Such models, however, are expensive 
and frequently impossible to employ since  operating 
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Fig. 1. Diagram of the global/local control system. 

 
data in the sensitive region are scarce. 

To solve the above problem, Tsai et al. (2002) 
developed a robust model predictive control scheme 
through regional knowledge analysis of ANN. They 
proposed a coordinate controller that harmonizes 
each other to make the final control decision. The 
coordinator is composed of an MPC and an NAC. 
The concepts behind the controller are novel and 
simulation results obtained have been positive, but 
experimental results have not been encouraging be-
cause NAC is very sensitive to measurement noise. 
Since PI controllers have been successfully used in 
industrial, we replace the NAC with the PI controller 
to construct a combined global/local control system 
to handle the pH control system. In the combined 
controller, the MPC is viewed as a global control, 
and the PI controller is regarded as a local control. 
When a disturbance occurs, the global control is used 
to steer the process under control into or near the 
sensitive region; then the local control takes over the 
task of finally settling the process at the desired set 
point. Both simulation and experimental results 
showed that such a combination is more economical, 
because PI control can be easily tuned for a sensitive 
region and a model of moderate accuracy for other 
non-sensitive regions can be built with much less ef-
fort. Furthermore, it should be noted that this is the 
first study, in which experimental results were ob-
tained using a global/local controller.  

 
 

THEORY 
 

The global/local combined controller  
 
A combined global/local control system com-

prises an MPC and a PI control as depicted in Fig.1. 
Despite the complexity and nonlinearity of the sys-
tem, the design of an ANN model only requires the 
input/output data. In order to investigate the dynamic 
behaviors of a pH control system, firstly, an ANN 
model can be implemented instead of first principal 
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model. Next, an optimizer based on the ANN model 
can be used to generate the controller actions of the 
global control model. That is to say, we can adopt an 
MPC (Tasi et al., 2002) containing an ANN model 
and an optimizer as the global controller. The objec-
tive function J of the optimizer is as follows: 
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where ySP is the set point value, y is the controlled 
variable, uGC is the manipulated variable of the 
global controller, minGCu , and are the lower ad 
upper limits, respectively, of u

maxGCu ,

GC, w is the penalty 
factor used to suppress excessive control actions, p is 
the prediction horizon, c is the control horizon, and 
hGC(t) is the deviation value between y(t) and yMPC(t), 
i.e.,  

)()()( MPC tytythGC −=   (2) 

As indicated in our previous work (Tasi et al., 
2002), an MPC is nearly perfect if the model/plant 
mismatch is negligible. However, the results is usu-
ally in a longer settling time if the plant/model mis-
match becomes larger, i.e. the robust problem be-
comes important. According to the analysis of many 
authors (e.g., Ricker and Lee, 1995; MacMurray and 
Himmelblau, 1995), the robust control issue exists 
on a case-by-case, and hence there exists no general 
rule exists. It is necessary to provide an extra assis-
tance to support the MPC control to solve this prob-
lem.  

It is intuitive to seek an easily tuned controller 
as a partner for the MPC controller. Of course, a 
classical control, for example, a PI controller is the 
primary candidate rather than an NAC controller. 
The major reasons are: (1) it is the most widely used 
controller in most industries, and (2) the tuning rule 
of a PI controller is better known than that of NAC. 
In the study, we implemented a PI controller as the 
local controller in our combined control approach as  
follows: 
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where KC is the proportional gain, I  is the integral 
constant, and T

τ
S is the sampling period. The disad-

vantages of an NAC controller will be shown in our  
experimental  results  discussed  later   (Fig. 12).  
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Fig. 2. Diagram of the simulated neutralization CSTR. 

 
For the proposed combined control system, a coordi-
nator is inserted into the scheme to conjugate the two 
controllers. In the following section, a coordinator 
will be introduced. 

 
The coordinating rule 

 
The concept behind the Parzen-Rosenblatt 

(Haykin, 1999) probability density function is used 
to estimate the reliability of the model. For simplic-
ity, the probability decision factor is defined as Ψ
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where xnew represents the input variables of the ANN 
model, and a and b are constants. From Haykin’s 
work (Haykin, 1999), is defined as the 
probability density estimator from the new event x

{ } )( newx xf
new 

based on the training data set. Then a coordinating 
rule is defined and used to make the final decisions 
regarding the combined controllers system: 

,)1( LCGCC uuu ×Ψ−+×Ψ=   (5) 

where uC is the control action of the combined 
global/local control system. 

 
The neutralization system 

 
Neutralization reactions are widely used in 

chemical industries. The pH control system has been 
widely studied because the model benefits from 
highly sensitive and nonlinear operating conditions. 
Many researchers have tried to solve the pH control 
problem, but their results have not always been ac-
cepted by chemical industries. In this paper, we will 
use an example which was researched by Palancar et 
al. (1996, 1998) and is depicted in Fig. 2. The simu-
lated pH control system is composed of two inlet 
streams and one outlet stream in a continuous stirred 
tank reactor (CSTR). There are two inlet streams: 
one is the acid flow, QA, an aqueous solution consist-
ing of acetic acid and propionic acid; the other is the 
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base flow, QB, an aqueous solution consisting of so-
dium hydroxide. The outlet stream is Q. The neu-
tralization reactions are as follows: 

AcH ⇌ Ac–+H+, (6) 

PrH ⇌ Pr–+H+, (7) 

NaOH ⇌ Na++OH–, (8) 

H2O ⇌ H++ OH– . (9) 
For the CSTR, the material balance equations 

can be derived as 

t
CVQCCQA d

d PrH
PrHPrH,0 +=   (10) 

t
CVQCCQA d

d AcH
AcHAcH,0 +=   (11) 

t
CVQCCQB d

d NaOH
NaOHNaOH,0 +=   (12) 

where, AcHC , PrH , and NaOH are the concentrations 
of the components AcH, PrH, and NaOH, V is the 
volume of the reactor. Then the pH value can be de-
rived from the dissociation equilibrium: 
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where the ionization constants KAcH =10–4.75 and KPrH 
=10–4.87 at 25oC. At this temperature, the system has 
an equivalence point around pH = 8.9. 

 
 

EXPERIMENTAL SETUP 
 
The experimental instruments used in the neu-

tralization system include: (1) a pH sensor, (2) a pH 
transmitter, (3) an agitator, and (4) metering pumps, 
as depicted in Fig. 3. An aqueous solution consisting 
of acetic acid, propionic acid, and sodium hydroxide 
were prepared for the experiment. Table 1 shows de-
tailed information about the above instruments and 
chemicals. The initial states of the pH control system 
are given in Table 2. Figure 4 shows the real titration 
behaviors observed in the neutralization experiment 
and demonstrates the sparseness and sensitivity 
around the regions of the equivalence points. The 
aim of the experiment was to effectively control a 
nonlinear, sensitive system. Therefore, we chose the 
pH control system shown in Fig. 2 as our experimen-
tal model. For simplicity, we let the pH value be the 
controlled variable, we regarded the base flow rate 
QB as the manipulated variable, and we viewed the 
mixed acid flow rate QA as the disturbance variable. 
The pH control was a single input and single output 
(SISO) system. In order to maintain  the  liquid  level 

Table 1. Instruments and chemicals. 

pH sensor: HI1090T, HANNA Instruments 
pH transmitter: HI18711E, HANNA 

Instruments 
agitator: HI190M/U, HANNA Instruments  

Instruments

metering pump: version 30E/32E,LANG 
APPARATEBAU GmbH 

acetic acid  
propionic acid 
sodium hydroxide 

Chemicals

pH standard solution 
 
Table 2. Initial states of the pH control system. 

pH value 6.5 
C0,ArH 1.0 mol/L 
C0,PrH 1.0 mol/L 
C0,NaOH 2.0 mol/L 
QA 14.2 mL/min 
QB 14.0 mL/min 
Q 28.2 mL/min 
V 1.0 L 

 

  
Fig. 3. Diagram of the neutralization pilot plant. 

 

  
Fig. 4. Titration curve of the neutralization pilot plant.   
fixed in the CSTR, the output stream was imple-
mented as the overflow of the reactor.  
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Fig. 5. The training data from a PRBS generator.     

   
Fig. 6. The training results for the ANN model. 

 
The data for training the ANN model were gen-

erated by changing the set-point values for the PI 
controller (KC = 5, I = 150), based on a pseudo ran-
dom binary sequence (PRBS). Note that the PI set-
tings were obtained using a simple Ziegler-Nichols 
reaction curve approach. The sampling and control 
actions  were  performed  every  10  s.  The  set-point 

τ

  
Fig. 7. The testing results for the ANN model. 

 
 

values SP  of the pH control system had to fully 
cover the range around the equivalence point pH = 
8.9, so  was calculated as 

y

SPy

kySP 5.35.8 += ,  (14) 

where 1≤k and the value of k is obtained from the 
PRBS generator. Equation (14) produces SP values 
between pH = 5 and pH = 12. Figure 5 shows the 
training data. Figures 6 and 7 show  the  training  and 
testing results obtained with the ANN model. From 
these two figures, it is observed that the prediction 
accuracy in the equivalence region is worse than that 
in the non-equivalence regions. This is because 
fewer experimental data exist around the equivalence 
region. We solved this difficulty with the help of a PI 
controller rather than by improving the model accu-
racy. 

y

 
 

RESULTS 
 
In this section, we will use the results obtained 

simulation and experimental results demonstrate the 
superiority of the combined global/local controller. 
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Fig. 8. Dynamics of the simulated pH system under MPC 

while a series of step changes in the pH set point 
occur.  

 
Simulation results 

 
Before discussing the experimental study, we 

will examine the results obtained with the simulated 
pH system. Figure 8 displays the performance of the 
MPC, which employed an ANN model trained with 
data from the simulated plant. Note that the parame-
ters of the MPC were implemented based on our 
previous analyses (Tsai et al., 2002). The  simulation  
results show that the simulated plant could not be 
controlled well around the equivalence point. In Fig. 
9, we show that the PI controller could be tuned to 
control the simulated pH plant under set point 
changes. Note that the PI controller was tuned so as 
to be stable around the equivalence point; hence, the 
PI controller could not perform well beyond that 
range. Also note that the PI controller was very con-
servative since the system behaved in a very sensi-
tive manner around that point; and hence, the closed 
loop system behaved sluggishly other around set 
point values. In Fig. 9, we also compare the servo 
behaviors of the pH system obtained by implement-
ing the PI, nonlinear MPC, and combined approach 
derived in this paper. As expected, the combined ap-
proach achieved faster response than the PI control-
ler and was much more stable than the nonlinear 
MPC. Figure 10 compares the regulatory behaviors 
of these three controllers based on a step changes in 
the acid input. Once again, the combined approach is 
shown to be superior to the PI and nonlinear-MPC. 

 
Experimental results 

 
The simulation results show  the  superiority  of 

the proposed combined controller. The verifying ex-
periments performed on the pilot plant will be dis-
cussed in this section. In the  experiments,  particular  

  
Fig. 9. Dynamics of the simulated pH system controlled by 

means of PI, MPC, and GLC, respectively, while a 
series of step changes in the pH set point occur. 

 

  
Fig.10. Dynamics of the simulated pH system controlled by 

means of PI, MPC, and GLC, respectively, while a 
series of disturbances (acid flow) are introduced.     

   
Fig. 11. Dynamics of the pilot plant under PI control (KC = 3, 

τI = 150) while a series of step changes in the pH set 
point occur.    

attention was paid to the following two different do-
mains: one was the highly sensitive, nonlinear region 
located around pH values ranging from 6.5 to 10.5; 
the other was the less sensitive region around pH < 
6.5 or pH > 10.5. The initial experimental states are 
given in Table 1,  and  the  period  for  sampling  and 
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Fig. 12. Dynamics of the pilot plant under NAC for set point 

change. 
 

  

  
Fig. 13. Dynamics of the pilot plant under MPC while a series 

of step changes in the pH set point occur. 
 

controlling actions was 10 s. Firstly, we will com-
pare   the   experimental   results   achieved  with  the 
above three control strategies for a series of step 
changes in the set points of pH values. With the sin-
gle PI controller, Fig. 11 shows that satisfactory per-
formance was achieved even though there was  
a bit of oscillation around the nonlinear region, but  
there was a longer settling  time  when  the  set  point 
was far away from the equivalence point. Figure 12 
shows the experimental servo behavior of this pH 
system with an NAC controller. Unlike the simula-
tion obtained in our previous study (Tasi et al., 2002), 
the experimental results obtained here show that the 
NAC is very sensitive, and that much effort is 
needed to tune it. This also explains why we imple-
mented the PI controller, as shown in Fig. 11, a local 
controller. Through the training and testing of an 
ANN model as depicted in Figs. 6 and 7, we built the 
MPC for the pH control system. As shown in Fig. 13, 
the MPC quickly tracked the change of the set point 
in the less nonlinear region, but this led to  poor  per- 

 

f {x
}

Ψ
 

 
Fig. 14. Dynamics of the pilot plant under the combined 

controller while a series of step changes in the pH set 
point occur.  

 

  
Fig. 15. Dynamics of the pilot plant under PI, MPC, and GLC, 

respectively, while a series of step changes in the pH 
set point occur. 

 
formances around the sensitive regions. However, as 
shown in Fig. 14, much better performance was 
achieved with the combined  controller,  whether  the 
set point was in the nonlinear region or not. Note that 
the region knowledge index and design factor were 
derived in Eq. (4). In Fig. 15, the experimental ob-
tained with the above three control schemes are 
compared. In all the regions, including the sensitive 
region, the controlled variable was closely tracked by 
the combined controller. Comparing Fig. 15 and Fig. 
9, reveals that the responses obtained in the experi-
ments were much noisier than those obtained in the 
simulation, and with our experimental results shown 
in Fig. 12 reveal that the NAC is not suitable for real 
applications. 

Finally, the rate of acid flow was changed to 
evaluate the regulatory properties of these three con-
trollers, and the experimental results, as shown in Fig. 
16, clearly confirm the superiority of the combined 
controller. Figure 17 displays the results of a 36-hour 
reliability test performed with the combined control 
algorithm in a pilot neutralization plant.  
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Fig. 16. Dynamics of the pilot plant under PI, MPC, and GLC, 

respectively, while step changes in the disturbance 
variable (acid flow rate) are introduced. 

 

 
 

 
Fig. 17. Record of a 36-hour reliability test for the combined 

global/local algorithm as used in the pilot neutraliza-
tion plant. 

 
 

CONCLUSION 
 

This study solved the problem that occurs when 
the operation point is located in a highly sensitive 
region surrounded by non-sensitive regions. This 
problem is typically occurs in pH processes and 
high-purity distillation columns. The  proposed  con-
trol system consists of a local controller that works 
in the sensitive region and a global controller that 
works in regions with normal sensitivity. The central 
idea is that when a disturbance kicks the operation 
out of the sensitive region, the global controller is 
employed to bring the operation back to the bound-
ary of the sensitive region, where control is handed 
over to the local controller, which is implemented by 
combining the outputs from both the local and global 
controllers. In the framework of combined global/ 
local control (GLC), the global controller can be 

built with much less effort since its task is only to 
push the operation from surrounding non-sensitive 
regions to the boundary of the sensitive region. The 
concept of GLC has been demonstrated using both a 
simulated pH control process and a pilot neutraliza-
tion plant. Results obtained from both simulations 
and experiments reveal the excellent dynamical be-
havirs of the GLC schemes.  
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NOMENCLATURE  
 

a,b  constant in the probability density func-
tion 

CAcH  concentration of acetic acid, mol/L 
CNaOH  concentration of sodium hydroxide, 

mol/L 
CPrH  concentration of propionic acid, mol/L f {x

}

C0,AcH  initial concentration of acetic acid, 
mol/L,  

C0,NaOH  initial concentration of sodium hydrox-
ide, mol/L,  Ψ

 

C0,PrH  initial concentration of propionic acid , 
mol/L,  Time(h) 

{ }xf   probability density estimator 
hGC  value of deviation between y(t) and  

yMPC(t) 
KAcH  ionization constant of acetic acid 
KC  proportional gain 
KPrH  ionization constant of propionic acid 
Q  outlet flow, mL/min  
QA  acid flow, mL/min  
QB  base flow, mL/min  
TS  sampling period, s 
t  time, s  
uC  control action of the GLC controller 
uGC  manipulated variable of the global con-

troller 
uLC manipulated variable of the local 

controller 
V  tank volume, L  
w  penalty factor 
xnew  new event  
y  controlled variable 
yMPC  controlled variable of the MPC controller  
ySP  set point  
z–1  backward shift operator 
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Greek symbols MacMurray, J. C. and D. M. Himmelblau, “Modeling and 
Control of a Packed Distillation Column Using Artificial 
Neural Networks,” Comput Chem. Eng., 19, 1077 (1995). 

 
Δ  operator of (1–z–1) 
Ψ   probability decision factor Mahmoud, R. P. and S. Mohammad, “pH Control Using the 

Nonlinear Multiple Models, Switching, and Tuning 
Approach,” Ind. Eng. Chem. Res., 39, 1311 (2000). 

Iτ  integral constant, s  
 

Abbreviation 
Manner, B. R., F. J. Doyle, B. A. Ogunnaike, and R. K. 

Pearson, “Nonlinear Model Predictive Control of 
Simulated Multivariable Polymerization Reactor Using 
Second-Order Volterra Models,” Automatica, 32, 1285 
(1996). 

 
ANN artificial neural network 
GLC  global/local control  
MPC model predictive control 
NAC  neural adaptive control 
PID  proportional integral derivative control Palancar, M. C., J. M. Aragon, J. A. Miguens, and J. S. 

Torrecilla, “Application of a Model Reference Adaptive 
Control System to the pH-Control, Effects of Lag and 
Delay Time,” Ind. Eng. Chem. Res., 35, 4100 (1996). 

PRBS  pseudo random binary sequence 
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全域─局域組合控制策略對一靈敏之非線性系統 
在模式不確定性下之實驗探討 

林平和 
南亞技術學院化學工程學系 

陳傑豪 鄭西顯
清華大學化學工程學系  

楚紀正 
北京化工大學自動化系 

摘  要 

一般傳統的的比例─積分自適控制器，在解決非線性系統之制器問題時，通常採用調諧比例─積分控制器參數的

方式；而本文，則以模式預測控制作為一個全域的控制器，而比例─積分控制器僅擔任局域控制的角色，發展出一全域

─局域組合控制策略，來解決既靈敏又兼具不確定性的非線系統之控制問題。另外，在控制模式不準確的系統時，若以

人工智慧類神經網路建模時，常使用模式預測控制，但是因為訓練資料不完全或其它的因素，使得模式有誤差存在，而

無法達到有效的控制；而應用此諧合控制策略，則可用比例─積分來修正輔助模式預測控制的控制效果。最後，為了證

明此控制理論的強健性，特別以酸鹼中和反應為驗證實驗，因為中和反應在滴定當量點附近之區域是相當敏感又非線性

化的；經由多次的模擬與實驗的結果顯示，此全域─局域組合控制策略，確實能夠在高度非線性的系統有非常好的控制

表現。 
 

 


