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An Interactive Sampling Strategy Based
on Information Analysis and Ordinary Kriging

for Locating Hot Spot Regions1

Shyan-Shu Shieh,2 Ji-Zheng Chu,3 and Shi-Shang Jang4

This study proposes an interactive sampling strategy for locating the hot spot or maximum regions
of a concerned attribute in a given area of survey. In the proposed strategy, information analysis is
performed based on the ordinary kriging from the existing sample data to suggest a new batch of
samples under the criterion of the highest information free energy. The information free energy (F) is
a function of information energy (U) and information entropy (S) through F = U − T S, where T is
information temperature and is used to coordinate the contribution of U and S to F. Information energy
is the value of the concerned attribute, and information entropy is the transformed error variance of
kriging and therefore measures the evenness and density of coverage of samples over the area under
survey. At early sampling batches, information temperature is high and information entropy dominates
the information free energy, and samples are suggested to give an even and dense enough coverage
of the whole area under investigation. As samples accumulate, information temperature decreases to
enlarge the contribution of information energy, and future samples are taken toward the locations
with high attribute values. Two examples demonstrate the efficiency and effectiveness of the proposed
sampling strategy in locating the hot spot regions of various fields: (1) a heavy metal contaminated
site reproduced by modeling on 55 real field data; (2) a simulated two-dimensional field by the random
phase volume (RPV) model. The results show that the proposed strategy, a robust interactive sampling
procedure, is able to locate hot spot regions without compromising with the overall profile of an
under-survey area.

KEY WORDS: information theory, intermediate modeling, multi-stage sampling, random phase
volume.

INTRODUCTION

There are a large number of wastes dumping sites in the world, which were formed
illegally and in great hurry or legally but without any record of their constitutions.
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Such large-scale dumpling sites of waste constitute a serious environmental
problem and their evaluation through sampling is of great importance.

In surveying the distribution of a particular attribute in an area, one of the main
concerns is where “hot spots”, or maxima, or extremes are and what the attribute
values are at hot spots. For instance, we hope to know not only the spreading extent
of contamination, but also the highly polluted sub-regions in a suspected area. Both
are equally important in determining the financial needs in cleaning up, in deciding
the feasible treatment technology, and in assessing the risk of environmental
exposure. The concerns are also very true in mining. Rich areas of a mine often
decide the value of the whole field. In fact, the long and labor-consuming process of
a survey needs the encouragement from finding hot spot regions. The distributing
extent and the hot spot regions are two interrelating aspects of a survey. Only when
all the main hot spot regions of the interested attributes are identified, an area can
be regarded as thoroughly understood. On the other hand, without a sufficient
coverage of samples over the investigated area, it is not possible to find all the hot
spot regions.

Geostatistical methods map the spatial variability of attributes by interpolat-
ing. To a large extent, the number and distribution of samples determine the quality
of mapping and the cost. Many researchers have since attempted to design efficient
sampling schemes. In a discussion paper, Brus and de Gruijter (1977) showed that
both the design-based sampling strategy stemmed from classical sampling theory,
and the model-based sampling strategy developed in geostatistics, are valid for
spatial sampling and estimation. They also noted that many factors determine
the effectiveness and efficiency of a statistical approach for spatial sampling and
estimation. Therefore, they developed a decision tree for selecting between the
model-based and the design-based sampling strategies. Aiming at the full use of the
prior information on soil variability and statistical knowledge on spatial sampling,
Domburg, de Gruijter, and van Beek (1997) proposed a knowledge-based system
using dynamic programming for designing efficient soil survey schemes. van
Groenigen, Stein, and Zuurbier (1997) proposed an interactive sampling procedure
to optimize environmental risk assessment. In their method, probability maps are
made with indicator kriging from the existing spatial interpolation results, and
such probability maps are then used to direct subsequent sampling.

Sampling design is a complex and constrained optimization problem.
{Domburg,} de Gruijter, and van Beek (1997) pointed out that sampling schemes
should be designed so that either the costs are minimized under certain mapping
quality requirements, or the quality is maximized within a given budget. When
the problem is limited to the optimal distribution of sample points in a given area,
two kinds of partially conflicting sampling strategies can be classified aiming at
optimal estimation of variogram parameters and at optimal spatial interpolation
respectively (van Groenigen, Pieters, and Stein, 2000). As for sampling strategies
aiming at optimal spatial interpolation, van Groenigen, Siderius, and Stein (1999)
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introduced the extended spatial simulated annealing (SSA) method to optimize
spatial sampling schemes through minimizing the kriging variance, which allows
considering the effect of previous observations and boundaries. Their method was
further extended to multivariate problems through an optimization criterion called
weighted means of shortest distance (van Groenigen, Pieters, and Stein, 2000). In
the methods of the above two papers, the criterion of optimization is basically a
measure of distance or statistical distance between the sample points and the raster
points representing the whole area of survey, although in multivariate problems,
weights that are a measure of the attribute values have an effect on the final
sampling scheme.

As we have noticed at the beginning that hot spot regions have special
meanings not only for themselves but also for the estimation of the whole
profile, missing a main hot spot region often means gross error in the estimated
profile. In order to make a more efficient sampling, Watson and Barnes (1995)
established three problem-dependent meanings for engineering extremes and
translated them into formal geostatistical/model-based criteria for designing infill
sample networks. Sasena, Papalambros, and Goovaerts (2000) made a systematic
comparison between the three criteria of Watson and Barnes and the so-called
efficient global optimization (EGO) algorithm (Jones, Schonlau, and Welch, 1998)
which uses a generalized expected improvement function to decide new sample
points, and concluded that none of the criteria is superior in all respects.

Generally speaking, any optimization procedure is a trial and error process
of making decisions on where a trial should be taken and performing the trial
at the selected conditions or locations. In the case of sampling design where
prior knowledge about the system is unavailable or scarce, expensive and time-
consuming sampling and sample analysis activities are necessary. Efforts on
designing efficient sampling schemes can be justified by the saving on labor-
ing and laboratory expense. In our previous study (Chen and others, 1998), an
artificial neural network (ANN) was employed as a universal modeling tool
(a meta-model) for correlating a performance index with operation variables
from existing experimental data, and information analysis was then performed
on the established model to suggest conditions at which future experiments are
needed. The information analysis maximizes the information free energy (F),
which is a function of information energy (U) and information entropy (S). The
information energy, or the performance index, is usually taken as the value of
the interested attribute. On the other hand, the information entropy is a measure
of the uniformity extent either in the distribution of the experimental conditions
in the space of operation variables for experimental design or in the location of
sample points in the spatial coordinates for sampling design. Another quantity
called information temperature (T) is employed to coordinate the contribution of
information energy and information entropy to the information free energy through
F = U − TS, which is an analogue to the concept of free energy in thermodynamics.
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At early sampling stages, information temperature is high and information entropy
dominates the information free energy, which suggests an even coverage of
samples on an investigated area. As a result, a rough, but somehow accurate
enough profile is being evolved to reveal the main features of an investigated
site. The information temperature decreases with the increase of samples and
information energy becomes more and more important to the information free
energy. The locations of sampling are therefore toward hot spot regions.

The criterion in the above information analysis procedure (Chen and others,
1998) is similar to the criterion for locating the regional extreme of Watson
and Barnes (1995) and to the generalized expected improvement function (with
g = 1, see Sasena, Papalambros, and Goovaerts, 2000). However, these criteria
have different roots in their derivation. While the criteria of Barnes and Watson
and the generalized expected improvement function are derived from statis-
tics, the criterion of the proposed information analysis comes from an analogue
to thermodynamic free energy. Being inspired by the successful application
of information analysis to various optimization processes (Chen and others,
1998, 1999; Lin and Jang, 1998; Chu and others, 2003; Yen, Wong, and Jang,
2003), we propose an interactive sampling (IS) strategy based on the above
procedure.

In the following context of this paper, system definition and a brief intro-
duction to the OK-estimator are firstly presented in section on sample system
definition and ordinary kriging estimates. Section on interactive sampling strategy
based on information analysis is dedicated to the development of the proposed
interactive sampling strategy. Section on two demonstration examples is used to
show the results of applying the proposed sampling scheme to the survey of two
simulated fields. The last section is for conclusion.

SAMPLE SYSTEM DEFINITION AND ORDINARY
KRIGING ESTIMATES

For a space � containing

V = {(yi, xi) | i = 1, 2, . . . , n } (1)

the ordinary kriging estimates the function value at a point x0 in � by a weighted
linear combination as

ỹ0 =
n∑

i=1

wiyi (2)

where x is the position coordinate of a point, y and ỹ are the measured and
estimated function values, and w1, w2, . . . , wn are the kriging weight determined
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by the following formula

W = C−1D (3)

with

W = [w1, w2, . . . , wn, µ]T (4)

C =




c11 c12 · · · c1n 1

c21 c22 · · · c2n 1
...

... · · · ...
...

cn1 cn2 · · · cnn 1

1 1 · · · 1 0




(5)

D = [c10, c20, . . . , cn0, 1]T (6)

where µ is a Lagrange multiplier derived from the kriging algorithm, and cij is
a statistical distance between points i and j. The relation between cij to its corre-
sponding geometric distance hij is called the covariance model. The most popularly
used model of covariance is the exponential model and has the following form

c =



c0 + c1, if |h| = 0

c1 exp
(

−3|h|
a

)
, if |h| > 0

(7)

where c0, c1, and a are parameters to describe the continuity in the space to be
investigated, and should be chosen carefully according to sample data as well as
experience. c0 is called the nugget effect, c0 + c1 the sill, and a the range.

Isaaks and Srivastava (1989) discussed the effect of these parameters on
the estimates in detail. In the case of anisotropy, special technique is required
to get a reduced covariance model by combining all covariance models recog-
nized for different directions. van Groenigen (2000) explained the influence of
variogram parameters on optimal sampling schemes for mapping by kriging.
However, our experience showed that the sensitivity of the sampling scheme
resulted from the procedure proposed in this study to these parameters is not
high. Therefore, we treat the ordinary kriging estimator in this study simply
as a substitute to the artificial neural network in the paper of Chen and others
(1998), which serves as a meta-model tool, and the parameters of the vari-
ograms are valued quite arbitrarily to be c0 = 0, c1 = 10, and a = 10 for both
two case studies in section on two demonstration examples. Isotropy is also
assumed in the case studies. It should be noted that the kriging estimator using
a better-suited variogram model is meaningful in practical applications. The
above variogram model may be very rough for the sampling spaces of the case
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studies in this paper, and it just serves to construct a basis for demonstration and
comparison.

INTERACTIVE SAMPLING STRATEGY BASED
ON INFORMATION ANALYSIS

The objective of the proposed work is to find hot spot regions in an unknown
field with the minimum number of sampling. To achieve the goal, we propose an
iterative process of sampling instead of one-time sampling. The idea is to utilize
partial (or prior) knowledge obtained from the existing sampling data to reduce the
number of sampling data on uninterested sub-areas. We use the ordinary kriging
estimator on the existing samples to obtain an up-to-date model as the partial
knowledge which can provide some clues toward the next sampling locations to
find hot spot regions. An up-to-date model, serving as partial knowledge, is also
called a meta-model. We consider regions with smooth landscape or with low
attribute values as uninterested area contrary to hot spot regions.

Besides reducing the number of sampling data via the clues from the existing
sampling data, remotely untapped area is, on the contrary, worth our attention to
take samples. To resolve the issues, we propose information analysis, which in-
troduces information energy and information entropy. In the following theoretical
derivation, we will show how to balance the choice of sampling locations on these
two factors.

According to Shannon’s definition (Shannon, 1948; Shannon and Weave,
1949) of information entropy for a variable X, which can randomly take values x
from a set X, the information entropy of the set X is

S(x) =
∑

x

p(x) ln[p(x)] (8)

where p(x) is the probability of the event x occurring. If the variable X can only
take a narrow range of values, p(x) for these values is close to 1. For other values
in X, p(x) is close to 0. Therefore S(x) is close to zero. If the variable X can take a
lot of different values in X each time with a small p(x), S(x) will be a large negative
number. Thus, information entropy is a measure of how random a variable is
distributed. It decreases when the variable is more randomly distributed.

Let us apply the information entropy in this study to measure the evenness
of sample locations among the whole surveyed area. Information entropy can
be calculated from its definition by assuming some probability distribution of the
concerned attribute (Haykin, 1999). According to the maximum entropy principle,
the transferred error variance of kriging can be taken as information entropy when
the ordinary kriging estimator is used as a meta-model.
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Suppose that there already exist samples V ′ ∈ � and

V ′ = {(yi, xi) | i = 1, 2, . . . , n − m } (9)

One of our problem is to find the optimum positions xk (k = n − m +1, . . . , n) at
which m new samples will be taken. As a result, the overall estimates about the
distribution in � will improve to the largest degree of possibility by the addition
of these new samples (xn−m+1, yn−m+1), . . . , (xn, yn).

In solving the above problem, let us firstly review the derivation of the
ordinary kriging (Isaaks and Srivastava, 1989). The ordinary kriging is called the
best linear unbiased estimator (BLUE) because the linear weighted combination
is used, the expected mean error is zero, and the variance of error is minimized.
Given a set of samples, V = V ′ ∪ (yn−m+1, xn−m+1) · · · ∪ (yn, xn), the minimum
error variance can be evaluated by

σ 2
R = σ 2 − WTD (10)

or equivalently

σ 2
R = σ 2 − DTC−1D (11)

where σ 2 is variance of random variable ỹ0.
Apparently, σ 2

R is a function of both the sample set (number and distribution of
the sample points) and the position x0 at which ỹ0 is evaluated. In the framework of
kriging estimator, the unbiasedness is guaranteed by a constraint in the derivation,
and the optimum position of the next sample points can be determined by the
following minimization as done by van Groenigen, Siderius, and Stein (1999)

min
xn−m+1,...,xn∈�

∫
�

σ 2
R(x0, xn−m+1, . . . , xn) dx0 (12)

In the ordinary kriging algorithm, the predicted error at a point x0 is a random
variable R = r ∈ (−∞,∞) with zero mean and a variance of σ 2

R . For such a
random quantity, the maximum entropy principle (Haykin, 1999) says that it
should follow a Gaussian distribution

fR(r) = 1√
2πσR

exp

(
− r2

2σ 2
R

)
(13)

and the corresponding information entropy is

SR = 1

2

[
1 + log(2πσ 2

R)
]

(14)
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Equation (14) is the entropy of the prediction error for a particular point in
space �, and the mean entropy of the whole space can be calculated as follows

S = 1

Ne

Ne∑
i=1

SR,i (15)

where Ne is the number of points used to represent the whole space (also of the
nodes of fine raster grid in the paper of van Groenigen, Siderius, and Stein, 1999).

The above criterion only considers the influence of statistical distance. If
isotropic covariance models are used, the above criterion produces samples located
uniformly in the space �. In accordance with our purpose to locate hot spot regions,
it is wiser to populate more points at the maxima of the landscape, if there is some
implication from the existing samples to show the landscape of merit. Namely, the
ideal positions of the new samples should satisfy both the criterion of (12) and the
following one:

max
xn−m+1,...,xn∈�

ỹ(xn−m+1) + · · · + ỹ(xn) (16)

The criterion of (16) says that the new sample points should locate at the
maximum of the landscape of merit. Since the two criteria of (12) and (16)
generally conflict to each other, a coordination mechanism is necessary and can
be built by defining a new quantity (Chen and others, 1998),

F = U − T S (17)

where F is information free energy, U = ỹ(xn−m+1) + · · · + ỹ(xn)is information
energy, S is information entropy, and T is information temperature or temperature
in short. Our problem now becomes max

xn−m+1,...,xn∈�
F for locating points at which F

is maximized.
The temperature T in Equation (17) can be regarded as a compromising factor.

At early sampling stages, T should be high, and the information entropy dominates
to ensure a sufficiently uniform coverage of the whole space. With the increase of
samples, the landscape of merit becomes clearer, and T is lowered to increase the
effect of information energy, which will enable new samples to move toward the
maximum of the landscape.

Some patterns exist for the decay of temperature in literature. The information
temperature is a coordinating factor in nature and can be selected empirically. The
magnitudes of U and S vary in different cases that have different units and scales.
The choice of T then becomes difficult and depends on the value of U and S in
each case. Therefore, we normalize U and S. A simple step function is used in this
study for the information temperature T = 10, 6, 4, 2, 0 for batches 2, 3, 4, 5 and
6. After normalization, we rewrite Equation (17) as follows.

F̄ = Ū − T S̄ (18)
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where F̄ , Ūand S̄ are normalized infofrmation free energy, energy and entropy.
The normalization can be done with the following equations

Ū = U − Umin

Umax − Umin
(19)

and

S̄ = − S − Smin

Smax − Smin
(20)

together with

Umin = min(ỹi |i = 1, 2, . . . , Ne ) (21)

Umax = max(ỹi |i = 1, 2, . . . , Ne ) (22)

Smin = min(SR,i |i = 1, 2, . . . , Ne ) (23)

Smax = max(SR,i |i = 1, 2, . . . , Ne ) (24)

From the above analysis, the proposed interactive sampling strategy can be
summarized in the following iterative sequence:

a. If no prior observations exist, samples are firstly taken in the area. In all
the case studies of this paper, regular square grid scheme is employed to
take the first batch of samples, which is necessary to start the proposed
interactive sampling scheme.

b. The area to be investigated is specified together with the variogram model
to be used, and nodes of fine raster grid for representation of the whole
investigated area are established.

c. Give the number of samples (m) to be taken in the following batch and
search for the locations of all the m samples through max

xn−m+1,...,xn∈�
F̄ . Sim-

ulated annealing (Kirkpatrick, Gelatt, and Vecchi, 1983; van Groenigen,
Siderius, and Stein, 1999) is used for the maximization.

d. Check the stopping criterion, which may be that the number of samples
reaches a prescribed limit or that the suggested sample locations cluster
closely.

e. If the stopping criterion is fulfilled, the whole procedure is terminated;
otherwise, a batch of samples is taken at the locations determined in (iii),
and go back to (ii).

At this point, it should be emphasized that the number of batches and the
number of sample points in each batch should be scheduled depending on the
available financial resources available, the time limitation, and other restrictions.
After the numbers are arranged, the pattern of temperature decay is determined.
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Figure 1. Attribute map of the HMC site and the hot spot
region (attribute >86).

Both the numbers and the temperature pattern are crucial to the final results, and
can be readjusted between batches or in a batch according to the judgment of an
experienced operator. From this perspective, the algorithm above is a sampling phi-
losophy to a large degree and also depends strongly on the experience of its users.

TWO DEMONSTRATION EXAMPLES

Case 1: A Heavy Metal Contaminated Site

Juang, Lee, and Chen (1996) surveyed a heavy metal contaminated site,
approximately a 360 m by 360 m, in Taiwan by taking 55 field samples randomly.
Although we never know the real contamination spatial profiles, we reproduce the
site with the OK-estimator based on the 55 field data. Assuming the reproduction
site is real, 100 by 100 grid points, totally 10,000, are estimated from the
OK-estimator model as shown in Figure 1. The heavy metal contamination concen-
tration ranges from 9.5 to 126.7. The contamination areas whose concentration
is above 86 are considered as hot spot regions in this case. As a result, 79 out
10,000 grid points are deemed as in the hot spot region circled by the white-lined
curved in Figure 1. From the range description part in Table 1 and the histogram
in Figure 2, we can see more than 80% of points are in the uninterested area. Since
we are concerned with the high attribute value region and the hot spot region, we
divide the whole range into four sub-ranges according to the attribute value, not
quartile of the total number. The number and mean of the sub-ranges, the total
population and the hot spot region are listed in Table 1.

In this case, besides applying the proposed interactive sampling strategy to
take samples from the above reproduced site, we also use the typical sampling
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Table 1. Result Summary for the HMC Site

Attribute range

0–25% 25–50% 50–75% 75–100% 0–100%
Hot spot
region

Range description
No. of points 5286 2892 1551 271 10000 79
Mean 29.09 47.21 65.91 83.53 41.51 90.27

Mean absolute errors of RG
16 samples 2.32 3.32 5.03 18.05 3.45 25.7
25 samples 1.27 2.20 2.36 12.00 2.00 19.11
36 samples 0.97 1.62 2.76 9.29 1.63 14.41
49 samples 0.81 1.29 1.98 6.40 1.28 10.93
64 samples 0.53 0.90 1.41 4.94 0.90 9.34

Mean absolute errors of IS
17 samples (Batch 2) 2.19 3.04 4.28 10.09 2.97 18.03
25 samples (Batch 3) 1.48 3.04 3.55 9.08 2.46 16.61
33 samples (Batch 4) 1.36 1.98 1.89 9.28 1.84 16.80
41 samples (Batch 5) 0.96 1.55 1.64 4.30 1.33 8.53
42 samples (Batch 6) 0.96 1.54 1.76 3.16 1.31 5.04

method, i.e., regular square-grid sampling for comparison. In the following text,
IS denotes for interactive sampling while RG for regular square-grid sampling.
The ordinary kriging estimator is employed to make models for both sampling
methods.

For RG method, we take five times of sampling, i.e., 16 (=42), 25, 36, 49,
64 data each. For the convenience of comparison, the OK estimating results of the
five-time samplings are also incorporated in Table 1. The mean absolute errors
(MAE in short) in the columns of the sub-ranges, the total population, and the hot

Figure 2. Histogram of 10,000 points in the
HMC site.
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spot region decrease as sampling size increases. It is natural that large sample size
gives more accurate estimating for the smooth landscape.

For IS method, the first batch starts with nine square-grid samples. The
OK estimator makes a model based on these nine samples. We, then, conduct
information analysis that evaluates information energy via the nine-sample model
and information entropy by Equation (14). We take eight samples for the next
batch and each of the following batches. It is arguable of how many samples to
take for each batch. However, the issue is beyond the scope of this study and we
choose eight arbitrarily. The locations of the best eight samples giving the largest
information free energy are subsequently determined.

With eight samples in Batch 2 and nine in Batch 1, the OK estimator is used to
model on these 17 points. Repeating the interactive process, we take eight samples
in Batch 3, 4 and 5. For Batch 6, all the best eight points are very close to each other.
We decide to take just one of them and conclude the iteration process converging.
In the consecutive sampling process of six batches, 42 samples are taken.

Scrutinizing on Table 1 that shows the results of comparing RG and IS
methods, we can summarize the following points. The MAEs of the total pop-
ulation and the hot spot region decreases as the interactive sampling process
proceeds. It is worth mentioning that at the beginning, through Batches 2–4, the
lower attribute ranges (0–75%) improve dramatically while the 75–100% range,
and the hot spot region are stagnant. The opposite phenomena, the 75–100%
range and the hot region improving but the lower attribute ranges not, appear
through Batches 4–6. It explains that at the beginning, the high temperature
makes information entropy, S, more dominant and information energy, U, less in
Equation (17). The controlling S in these stages favors even spreading of sampling
points. At the final stages of sampling process, with decreasing temperature,
U becomes dominating and favors sampling around the hot spot region. Even with
the addition of just one sample from Batches 5 to 6, the MAE of the 75–100%
range and the hot spot region decrease impressively because this sample hit the
jackpot.

Figure 3 shows the detailed process of sampling-location determination. In
the left-hand site, denoted as (a) in the figure, the samples of the current batch in the
IS process are located with the background showing the contour map based on the
55 field data which is presumed the real site. In the right-hand site, denoted as (b) in
the figure, the samples accumulated up to the present batch are located with the
background showing the contour map of the up-to-present-batch model. In the first
three batches, the locations of samples are symmetrical because of the domination
of information entropy S. Comparing (a) and (b) in the first batch of nine samples,
the figure shows that the model has formed a rough, but somehow accurate contour.
Therefore, the chosen samples of Batch 2 are located symmetrically toward to the
bottom of site. Starting from Batch 4, most of the chosen samples move toward
the hot spot region with a few locating remotely.
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Figure 3. IS process for the HMC site: (a) contour map based on the 55 field data and samples
taken at the current batch; (b) contour map of the current model based on the accumulation
samples up to the current batch.
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Figure 3. Continued.

The total number of samples taken in the IS method is 42 which is between 36
and 49 samples of the RG method. The MAEs of the lower attribute ranges (0–75%)
are comparable between these two methods, but the MAEs of the 75–100% range
and the hot spot region are much better in IS i.e., 3.16 and 5.04, than in RG i.e.,
4.94 and 9.34 for 64-sample model. In this case, the promising results of predicting
hot spot region in the IS method justify the effectiveness of information analysis
on selecting sampling locations.

Case 2: A Two-Dimensional Field from the RPV Model

The last case reproduced from the OK simulation model based on the 55 field
data. During simulating, we assume zero nugget effect, i.e., c0 = 0 in Equation
(7). Without any clue about the real contamination profile, we presume it is smooth.
In a (especially illegal) waste-dumping site, wastes are dumped batch by batch
from different sources. As a result, it is expected that a site contains various regions
with different magnitudes of contamination and discontinuity exists along various
regions. In this case, we generate a simulation case with very rugged landscape to
see if the IS method can locate hot spot regions or not. However, during modeling
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Figure 4. Attribute map of the 2D-RPV field and the two
hot spot regions (attribute >10,000).

on sample data no matter of using the RG or IS method, we still assume to deal
with smooth landscape pretending to know nothing ahead. In other words, we also
assume zero nugget effect during modeling in this case.

We apply the random phase volume model (RPV in short) to generate a
rugged landscape case. Falcioni and Deem (2000) have a detailed description
of the RPV model in their article. The RPV model can generate a number of
discontinuous regions (called phase in the original paper) in a multi-dimension
space with various magnitudes and changing rates, e.g., sharp or slow rising and
declining along landscape, among different regions.

Figure 4 is a two-dimensional field of ten phases produced from the RPV
model (the functional form of the RPV model and the parameters used to generate
Fig. 4 will be provided on request). For simplicity, we will name this simulation
site as the 2D-RPV field. Figure 5 shows the histogram of 10,000 uniformly
square-grid points. Since we are mainly concerned with the regions of high
attribute values, we identify all the 150 points whose attribute values are over
10,000. Two hot spot regions, confining the 150 points, are enveloped as shown in
Figure 4.

Figure 6 shows the detailed process of sampling location determination
by the IS method. The process starts with nine samples in the first batch, and
eight samples are taken for each of the following batches. Similar to Case 1,
the locations of samples taken in Batch 2 and 3 are symmetrical due to the
domination of information entropy factor. Samples suggested by IS in Batch 5
cluster around the neighborhood of the maximum point. Samples in the last batch
converge to the maximum point predicted by the OK-estimator based on all the
existing samples at the end of Batch 5. It is the result of information temperature’s
dropping. We take one sample in this batch and terminate the iterative sampling
process.
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Table 2. Result Summary for the 2D-RPV Field

Attribute range

0–25% 25–50% 50–75% 75–100% 0–100%
Hot spot
region

Range description
No. of points 5150 2327 1801 722 10000 150
Mean 1692 4131 6887 9411 3753 10544

Mean absolute errors of RG
16 samples 560 729 2010 3445 1069 5285
25 samples 1164 1112 623 1077 1048 1789
36 samples 485 655 1727 2091 864 3630
49 samples 505 847 1001 1690 760 3397
64 samples 396 565 861 1727 615 2897

Mean absolute errors of IS
17 samples (Batch 2) 966 953 839 1795 1000 2765
25 samples (Batch 3) 785 913 872 1861 908 3003
33 samples (Batch 4) 849 958 781 1155 884 1553
41 samples (Batch 5) 860 997 776 976 886 1144
42 samples (Batch 6) 860 997 776 976 886 1144

As contrasted to the deterministic manner of IS in locating hot spot regions
batch by batch, the RG scheme finds hot spot regions by chance when samples
are not dense enough. This is clear by observing the MAEs of hot spot regions in
Table 2. For the 2D-RPV field, RG of 25 points gives the lowest MAE for the two
hot spot regions, whereas RG of 36, 49 and 64 points present much higher MAEs
for the hot spot regions. The fact that one of 25 RG points hit the hot spot regions

Figure 5. Histogram of 10,000 points in the 2D-RPV field.
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Figure 6. IS process for the 2D-RPV field: (a) contour map of the 2D-RPV field and samples
taken at the current batch; (b) contour map of the current model based on the accumulation
samples up to the current batch.
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Figure 6. Continued.

but none of the rest RG methods does explains the by-chance phenomena of the
RG scheme.

Observing the MAEs of the the whole range (0–100%) as listed in Table 2,
we know that the mapping accuracy of both sampling schemes is comparable.
While RG of 36, 49 and 64 samples is more accurate in the lower ranges (0–50%),
IS of 33, 41 and 42 samples at the end of Batches 4, 5 and 6 is better than RG in
the higher ranges(50–100%). It is expected that the overall modeling performance
after 33 sample points taken at the end of Batch 4 by IS should be between that of
RG-25 and RG-36. When looking closely at the performance of the whole range
in Table 2, the IS method is worse than the RG method. The 50–75% range and
75–100% range only occupy 25% of the total population, the accurate modeling
performance in these two region are dwarfed by the rough modeling performance
in the lower ranges if the overall modeling performance is concerned. The objective
of the study is to locate the hot spot regions with the minimum sampling number,
the better prediction for the high attribute value area is valuable at the expense
of a little rough prediction for the uninterested area. Comparing with Case 1,
this case has very rugged landscape with 10 discontinuous zones. The IS method
work as expected in both of these two cases even though zero nugget parameter is
presumed.
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CONCLUSIONS

Hot spots (maxima or extremes) have great significance for mapping the
distribution of attributes in an area to be surveyed and for making decisions about
the area such as usage of a land, remedy to a polluted district, mining design, etc.
An interactive sampling strategy has been proposed in this study for the purpose
of locating the hot spot regions of an attribute in a given under-survey area. In
the proposed sampling strategy, the ordinary kriging estimator (OK-estimator) is
used as a meta-modeling tool to build a response surface of the interested attribute
with spatial coordinates from existing sample data. Information analysis is then
used to search the response surface for the future sampling locations in order to
obtain the rough profile of low attribute value regions and the detailed profile of
high attribute value regions.

Two case studies have demonstrated effectiveness of the proposed interactive
sampling strategy. Modeling on the 55 field data taken from a heavy metal
contamination site generates the first case. The landscape in this case is smooth.
The second case with very rugged landscape is a RPV model. For the purpose
of comparison, the one-time regular square-grid sampling scheme is used in
parallel with the proposed strategy. The results of the two cases show that the
proposed IS scheme is able to locate hot spot regions with much less samples in
a deterministic way in contrast to the regular square- grid scheme which find hot
spot regions by interpolating among a sufficiently large set of samples if we do
not consider the good luck of a grid point dropping right into a hot spot region.
The simulation results also show that the quality of mapping the whole area of
survey are comparable for both IS and RG, though less samples are taken by the
proposed IS scheme than the typical RG method. This can be explained by the
interpolation nature of the OK-estimator and by the fact that hot spot regions are
of significance to the accuracy of kriging mapping.

Though the proposed IS method is effective and efficient in locating hot spot
regions, its application is limited to that iterative sampling process is feasible or
that chemical analysis is expensive. Some cases in environmental investigation
and in geological exploration are suitable for the use of the proposed interactive
sampling strategy. Some issues, such as the determination of sample numbers in
every batch during iteration, the choice of a meta-modeling tool are as yet to be
explored.
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