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a Petrochemical Plant Under Considerations

of Uncertain Power Supplies
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Abstract—The electric power demands of many petrochemical
plants are matched by supplies from an in-house cogeneration
system and from the electric grid. However, due to the fluctuations
of fuel costs, production, and electricity rates, it is necessary to
balance electric supply between these two sources. In reality, un-
certain effects play a very important role in this decision-making
problem. One of the most important uncertainties is the oc-
currence of power interruptions from either one of the supply
sources, which could endanger operability and reliability of plant
operations. To minimize the total energy cost under consideration
of unexpected power failures, we break up the solution of the
problem into two layers. The outer layer is to determine the
optimum contracting of three-section time-of-use rate. We use
an artificial neural network regression model as a meta-model
to simulate the contour plot of a nonconvex cost function. The
occurrences of incidental power failures are simulated by the
Monte Carlo method. The inner layer is to determine the optimum
operation of the cogeneration system. Since the searching space
is huge in the outer layer and the Monte Carlo simulation in
the inner layer is time consuming, we implement an interactive
sampling search approach to find the optimal contract capacity in
this multi-local-optima problem.

Index Terms—Cogeneration, meta-model approach, Monte
Carlo simulation, optimal contract, uncertainty factors.

I. INTRODUCTION

THE OPTIMAL strategy for energy management chemical
plants has become critical recently due to the increase in

the price of fuels such as coal and oil. In-house cogeneration
systems are extremely useful in chemical plants due to the
availability of high-pressure steam, especially in those coun-
tries where the electrical grid system is unstable. Diewekar
et al. [1] have analyzed several uncertainties, such as fluctu-
ations of production rate, process performance, and fuel cost
in designing a power system. Incidental equipment failure,
however, is not one of uncertain factors considered in their
article. In many petrochemical plants as well as semiconductor
industries, a short period of power failure, even as short as
a few seconds, could result from several hours to a couple
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of days of plant shutdown. For many plants, such incidental
power failure is almost intolerable. Worse, if the electric power
needed during restartup is beyond the contract capacity, then it
incurs a large sum of penalty imposed by the power company.
Therefore, it is necessary to take power failure into account
when determining the design capacity of cogeneration system
or for the computation of optimum contracting demand with
the power company. In this paper, the terminologies, such as
failure, trip, or interruption, interchangeably mean incidental
stop of unit operations or power delivery.

Few among those works discussing optimum contracting
have considered the significance of power trips. There are three
scenarios of power trips: interruption of the electrical grid,
turbine failure, and boiler system failure. Each scenario has dif-
ferent responding procedures that have various electrical power
demands to restart the plant operation. Due to three-section
time-of-use (TOU) rate, the timing of power trip occurrence
also results in different economical damages. The formulation
of the optimum contracting problem in this paper takes all the
above considerations into account.

Material and energy balance modeling of cogeneration
system has been addressed in many studies. O’Brien and
Bansal [2] conducted a comprehensive review of these works.
Zheng and Furimsky [3] presented a complete simulation of the
cogeneration system using a commercialized package. Based on
these mature modeling techniques, many works focused on the
optimal operation of the cogeneration systems. For instance,
Arivalagan and Raghavendra [4] optimized fuel resources
under various levels of production in a chemical process.
Chen and Hong [5] used the Newton method to optimize load
allocation of boilers and generators under TOU rates. Tsay
and Lin [6] went one step further and solved a TOU problem
using evolutionary programming approach that is useful in
implementing an input/output regression curve. Besides, some
works focused on the general problem formulation for optimal
operation of flexible models [7]. Optimal energy management
of industrial consumers also attracts lots of attention among
the researchers. For instance, Gomez-Villalva and Ramos [8]
combined operation optimization and contracting decisions as
a whole, although they did not consider the process operation
uncertainties. Tsay et al. [9] worked on optimal contracting
decision without considering the optimal operation of the plant
with a cogeneration system.

Fig. 1 shows a general hierarchical operation strategy for a
manufacturing plant [10]. At the highest level, the past fluctua-
tion of raw material cost and the forecast of product price in the
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Fig. 1. General hierarchical operation strategy for a manufacturing plant.

future market are considered to determine production capacity
or resource allocation. We consider this as the strategic man-
agement level. At the second level, it is necessary to optimize
detailed operation based on the decision made at the strategic
management level. We consider this as the tactical manage-
ment level. The function of the lowest level is to perform some
regulation and servo control requested by the second level. It
should be noted that, as described in the literature, the levels
in the above hierarchical management/operation structure can
sometimes be blurred. In a plant with a cogeneration system,
optimizing contract capacity of imported electricity is a deci-
sion-making process at the strategic management level, while
optimizing operation of a cogeneration system is at tactical man-
agement level. The objective of this paper is to solve decision-
making problems at both levels at the same time. We also take
into consideration the incidental power trips in our decision-
making process.

Research on decision making under uncertainties became
substantial recently. Diwekar et al. [1], [11], [12] developed
optimal design of advanced power systems under uncertainty.
Their studies included the development of sampling tech-
nologies in an uncertainty variable space. Their sampling
technology is extremely effective in saving sampling number
when a rigorous model is used. However, a rigorous model is
not always available in solving optimization problem.

Given a set of contract capacity of the electric power grid, a
fixed charge (FC) can be easily calculated while the optimum
cogeneration plant operation, i.e., minimization of energy cost
(EC) by balancing thermal energy and electric energy, can be
done via conventional optimization techniques. However, in-
cidental failures of power supply causes production loss (PL)
and various penalty charge (PC), which varies with contract
capacity. The failures of cogeneration system and the electric
power grid system from the utility company are the major un-
certain factors in this study. The combination of the incidental
trip events are so high that the simulation work is formidable.
We implement the well-known Monte Carlo approach to esti-
mate penalty charge and production loss. At the top level of the
problem, a general regression model—artificial neural network
(ANN) model—is used to take all of EC, FC, PC, and PL into

TABLE I
DEFINITIONS OF EACH TIME PERIOD CATEGORY

account. A rigorous model is not available at this level. The re-
gressive ANN model is a meta-model that is effective in saving
sampling number, however, at the expense of solution accuracy.
During making strategic decision of optimal contract capacity,
tactical decision of optimal operation for a cogeneration system
is made. Besides, this paper can be viewed as an extension of
our previous meta-model driven experimental design approach
[13].

The rest of this paper is organized as follows. Section II in-
troduces the optimal operation approach in the second level of
the problem. In Section III, the optimal contracting capacity
problem in the first level is formulated. The solution method,
a meta-model approach, is illustrated in Section IV. We present
a real plant case in Section V. The conclusive remark is given in
the final section.

II. PROBLEM FORMULATION FOR OPTIMAL PLANT OPERATION

In this section, we focus on the problem formulation of the
second level, i.e., the optimal operation level for the cogen-
eration system, which has been discussed in many literatures
[4]–[6].

Without loss of any generality, let us assume the following
situations: 1) single utility company and 2) constant steam de-
mand for the plant.

It would be convenient to revise the following cost function
when considering multiple utility companies. It is also possible
to formulate a changeable steam demand problem as long as
the demand pattern is known. In the following, boldfaced letters
are used to represent a set of variables. Given a set of new ,
representing market disturbance variables, such as new demand
forecast, new energy price, new fuel price, etc., a set of manip-
ulated variables is to be determined at the strategic manage-
ment level. In this study, is a set of contract capacity for peak
(CP), semi-peak (CMP), and off-peak (COP) periods, and a set
of operation variables is determined at the tactical operation
level by solving the following optimization problem:

Min

(1)

where is the number of hours in the period in a year, is
the time period category (seven categories of TOU rates in our
study; see Table I), is the unit cost of the electrical energy
from the grid system in the period, is the unit price of the
electrical energy sold to the grid system in the period, is the
unit cost of fuel for the th high-pressure boiler, is the unit
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cost of fuel for the th medium-pressure auxiliary boiler,
is the total electricity purchased from the grid system in the
period, is the total electricity sold to the grid system in the

period, is the steam output of the th high-pressure boiler
in the period, is number of the high-pressure boilers,
is the total steam output of the th medium-pressure auxiliary
boiler in the period, and is the number of medium-pressure
auxiliary boilers.

Summarily, , ,
and represent the rest of the variables. The set is deter-
mined at the first level, while is to be solved as an optimization
problem formulated in this section. The following material bal-
ances, energy balances, and constraints for the operation units
are made for general cases. The detailed formulations of equa-
tions are referred to in the literature [4], [5], [20]:

1) operational constraints of high-pressure and medium-
pressure auxiliary boilers;

2) mass balance in each pressure steam header;
3) each pressure steam demand for the process;
4) recycled steam from the process to each steam eader;
5) operational constraints of steam turbines;
6) conversion of steam to electricity in a generator;
7) operational constraints of a generator;
8) electrical energy balance of the plant;
9) operational constraints of buying and selling electrical

power.

III. PROBLEM FORMULATION FOR OPTIMAL

CONTRACTING CAPACITY

An annual cost function can be revised as follows by con-
sidering all existing deterministic and stochastic uncertainties
in the integrated problem of the strategic management and op-
timum operation, i.e., the top and second levels in Fig. 1:

(2)

where , , and are defined in the previous section, and is
a set of incidental power failure events. Note that is determin-
istic, but is stochastic variable. The objective of this study is to
find a set of and to minimize the objective function with
a given set of . In other words, we would solve the following
optimization problem by minimizing the sum of EC, FC, PC for
overuse beyond the contract capacity, and PL due to the power
trips on an annual basis:

(3)
The fixed charge of contract capacity can be calculated by the
following formula:

(4)

where SM is the fixed demand charge of the contract capacity per
month during the summer season [NSM during the nonsummer-
season (NSS)]. The summer-season (SS) in the TOU tariff in the
following case is between June 1 to September 30, and the NSS
represents the rest of the year.

In this paper, we address the uncertainty of power failures
caused by steam turbine, boiler, or the grid system. Each kind
of failure incurred a different degree of damages on the plant
operation. The breakdown of turbines and generators in a co-
generation system results in disrupting electric power supply.
It may cause total or partial shutdown of the production fa-
cility, depending on the amount of electricity loss. Unless the
loss of electricity is small enough that it can be compensated by
stopping some of the nonurgent units, the whole plant is forced
to stop. For most petrochemical plants and semiconductor in-
dustries, partial loss of electric power usually forces total shut-
down of the plant operation. The disturbance of a boiler system
would result in both electric and thermal energy supplies. It usu-
ally causes a longer interruption in the operation. The influence
of the grid system’s failures is similar to that of cogeneration
system’s failures because both events only result in the loss of
partial electric power supply. However, there is a major differ-
ence between them. The electric power loss due to the cogen-
eration system’s failure may be made up for by raising power
supply from the grid system. However, it does not work in the
other way because it needs a certain period of time from in-
creasing the throughput of boilers to that of electric generators
in a cogeneration system.

These three kinds of power failure modes have different im-
pacts on business loss. First of all, the restartup procedures are
different for different parts of the plant and have different dura-
tions of operation loss hours. When the cogeneration system is
not working, it is necessary to import enough electric power to
start up the operation. The timing of power failure and startup
period incurs various electricity costs and penalties imposed by
the utility company due to overuse of electric power beyond the
contract capacity. Both depend on the TOU rates.

It is almost certain to incur a heavy penalty charge during
restartup after an interruption of plant operation. The penalty is
two times that of the fixed monthly demand charge when im-
ported electricity is less than 10% beyond the contract capacity,
while the penalty is three times when it is over 10%. The formu-
lation of total annual penalty charge equations, i.e., PC in (3),
is omitted due to its complexity and limited space in this paper.
A detailed description is given elsewhere [20] for the benefit of
interested readers.

It is impossible to calculate the cost incurred due to business
loss analytically because the timing and mode of power fail-
ures are stochastic, not deterministic. Therefore, we calculate
the business loss via the Monte Carlo method to simulate var-
ious incidental failure modes on an annual basis. Fig. 2 illus-
trates the flowchart of Monte Carlo simulation in this study.

The production loss due to power failures can be described as
follows:

(5)

where PL is the production loss, PF is the profit of production,
PR is the production rate, is the restartup time after an ac-
cidental boiler failure in the period, is the restartup time
after an accidental power failure in the period, is the number
of boiler trips in the period, and is the number of power
trips in the period annually.
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Fig. 2. One “experimental” run given a set of (CP, CMP, COP).

IV. INTEGRATED PROBLEM-SOLVING ALGORITHM

Given a new condition or a forecast of , consider the fol-
lowing general case:

(6)

subject to

(7)

Note that in (6), the optimal energy cost EC is a function of
only. In other words, given the new contract capacity, EC can be
solved by (7). Let the incidental failures be stochastic with a
known probability distribution . Then, the effects of on
can be determined by Monte Carlo simulation, and the problem
solving of (6) can be further reduced to

(8)

Theoretically, a complete sampling of is necessary to re-
duce (6) to (8). However, this sampling work, if not impossible,
is still formidable. In the case of this study, at least 15 000 runs
of Monte Carlo simulation [15] are necessary for the solution
of the cost function to reach an accuracy of US dollars
within 95% confidence level. It is time consuming to find the
corresponding with a given and can be treated as an ex-
perimental design problem. The basic idea of experimental de-
sign is to form a standard response surface via statistical exper-
imental design. Start with a set of experiments (trials), i.e., a set
of , in this case, . For each , a
corresponding can be obtained by following the computation
procedures shown in Fig. 2. Then, get a set of corresponding
results . A response surface model

is obtained based on and . An approximate solution
of (8) can be found as follows:

(9)

where function is usually a polynomial.
In several studies, the above optimization is performed inter-

actively. For example, in this case, with the best approximate

solution , a corresponding can be computed by following
the procedures given in Fig. 2. Now, a new ( , ) can be added
to the trial set and result set . A new response surface model
can be constructed, and a new optimum can be obtained based
on the new response surface, and so on. This iterative process
is termed an interactive sampling approach. The approximate
model is used to find the next sampling points in the real model.
This response surface model , which is computed quickly and
approximately, is called a meta-model [18]. In this paper, we
propose to implement an ANN model instead of a polynomial
model due to the complex and nonlinear nature of the problem,
as follows:

ANN (10)

The benefits of implementing such a model are as follows.

1) The ANN model has long been recognized as a powerful
tool to approximate complex multivariable functions [16],
[17].

2) With regression and evolutionary capability, the accuracy
of the model can be improved by increasing the size of
the training set (sets and ) during the interactive sam-
pling.

3) The real response surface of the TOU problem is basically
nonconvex, as will be shown in the next section; a poly-
nomial response surface is not suitable to fit this problem.

Another important issue in the interactive sampling of ex-
perimental design is how to implement an efficient and effec-
tive sampling strategy to locate the real optimum for (6). Espe-
cially for a problem such as (6), each sample, i.e., every given

, requires a lot of computation efforts as described above. If
a meta-model can completely represent the objective function,
then the optimization problem can be simplified as a search
problem. Unfortunately, no such perfect meta-model exists in
this study. Thus, the purposes of sampling for the objective func-
tion (6) are first to improve the meta-model, an ANN model, and
second to locate the global optimum in this TOU problem. In
order to include these two requirements in the model, we pro-
pose an efficient sampling method guided by information theory
that is an extension of Shannon’s information entropy [19].

Considering any random variable taking a value of , the
Shannon information entropy can be denoted by

(11)

where denotes the probability of a random variable whose
value is assumed a Gaussian distribution

(12)

where denotes the variance of the random variable. Thus, the
information entropy can be solved as

(13)
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In this study, given a new trial point and existing trial set ,
the variance can be evaluated by

(14)

where measures the distance between
the new trial point and an existing point in [21]. The
higher value of the information entropy of a sampling point
means more information can be obtained at that point. In other
words, further improvement of the ANN model can be achieved.
Meanwhile, we denote the information energy by

(15)

where is a constant to represent an estimated minimum
value for the objective function, and is the estimated
function value using the ANN model. A lower information en-
ergy of a trial point implies a lower objective function value
estimated by the ANN model, and the trial point is, hence, worth
sampling. However, the accuracy of an ANN model depends on
the distribution and complexity of the contour of the objective
function. Hence, there exists the need to compromise informa-
tion entropy and information energy. The candidates worth eval-
uating through the time-consuming Monte Carlo simulation are
those having the minimum information-free energy as follows:

(16)

where is the information temperature whose meaning is
similar to the annealing temperature in a simulated annealing
(SA) optimization approach. The approach adopted in this
paper is a modified version of our previous work [13]. The new
suggested sampling points are determined by 1) conducting
random sampling on the fast computing meta-model, i.e., an
ANN model in this paper, 2) deleting all unqualified points such
that , where is a threshold information-free energy,
and 3) clustering the qualified points, the new sampling points
are the cluster centers of these points. The details of the whole
approach are mentioned in our previous work [13].

In the proposed interactive algorithm, time-consuming Monte
Carlo simulation is only performed on the selected . An ANN
model at the very beginning is not trustworthy because only very
few “experiments” are performed. Fig. 2 shows the computation
details for one “experiment.” Temperature at this stage is set to
be high so that the new selected point is determined more by
information entropy term than by information energy term. As
more “experiments” are performed, the ANN model becomes
more reliable. Temperature is then set to be low so that the new
points are chosen more by the prediction based on the response
surface model. For the details, the reader is referred to our pre-
vious work. Our approach is summarized in the following steps
as well as shown in Fig. 3.

Step 1) Uniformly select 27 points of contract capacities
CP, CMP, COP from the solution space.

Step 2) Perform Monte Carlo simulation for each point in
the set of , and get the total costs for each point.

Fig. 3. Proposed algorithm.

Step 3) Construct an ANN response surface model using
the obtained and .

Step 4) Perform a random search on the ANN model, and
calculate the information-free energy as (15) for
each point, where the total cost is estimated by the
ANN model.

Step 5) Determine the optimal number of points [13] having
the lowest information-free energy.

Step 6) Perform Monte Carlo simulation for these new
points, and get the new cost functions .

Step 7) Check if the convergence is reached. If not, update
the ANN model with the addition of new experi-
ments, and go back to step 4.

A. Illustrative Example: Modified Himmelblau Function

The following benchmark problem, two-dimensional modi-
fied Himmelblau function [13] is used to verify the proposed
algorithm via comparing with the other well-known nonconvex
objective function optimization solvers

(17)
defined for and . In this paper, the
problem is solved by the updated algorithm, which is slightly
different from the original one in our pioneering study [13].
The contour plot of the above objective function is shown in
Fig. 4(a). The real optimum of this problem is located at ( ,

), and the optimum value is 43.3. This problem is solved
based on the derivation of this section. In each batch, several
points are suggested to be sampled as shown in Fig. 4(b), while
the accumulated sampling points are shown in Fig. 4(a). The
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Fig. 4. History of sampling points selected from the total solution space.
(a) Current and past experimental points against the contour of Himmeblau
function. (b) Corresponding model contour whose solid points represent the
next batch of the new experimental points.

TABLE II
PROPOSED APPROACH COMPARISON WITH THREE OPTIMIZATION APPROACHES

ANN model is trained after the sampling of each batch, and
the contour plots of the evolutionary ANN model are given in
Fig. 4(b). Compared to Fig. 4(a), the contour plot of the ANN
model is getting closer and closer to the real contour plot of the
objective function, which is shown in Fig. 4(a) as the number of
batches increases.

Table II lists the solution of the above modified Himmelblau
function using the proposed approach and several well-known
heuristic approaches, namely, Nelder-Mead simplex method
[22], simulated annealing, and genetic algorithm. All are based
on the same number, 50, of sampling. The gradient-based
approaches are not used to solve the problem because their
solution strongly depends on the initial point of the search.
It can be seen from Table II that all approaches except the
proposed one fail to find the global optimum. In order to obtain
statistically meaningful results, all approaches are repeated ten
times with various initial points, and the standard deviations are

TABLE III
THREE-SECTION TOU RATE STRUCTURE FOR EXTRA-HIGH-VOLTAGE

POWER SERVICE

TABLE IV
UPPER AND LOWER LIMITS OF MAIN EQUIPMENT CAPACITY

as shown in Table II. A comparison of the standard deviation
shows that the solution of the proposed approach at each time
nears the global optimum with the smallest variance.

V. EXAMPLE—A PETROCHEMICAL PLANT WITH A

COGENERATION SYSTEM

In this section, we present a real case of a petrochemical plant
with a cogeneration system, which includes a coal boiler, an
auxiliary oil boiler, a steam turbine, and two steam headers.
The proposed algorithm is implemented to determine an op-
timal contracting capacity and a corresponding optimal opera-
tion under TOU rates. The plant operates in a steady state mostly
with a constant steam demand. Prior to this paper, the plant
purchased fixed electric power from Taiwan Power Company
with three-section TOU rates, which have four different tariffs in
the summer season and three in the nonsummer season. Taiwan
Power Company charges a fixed monthly fee and imposes a se-
vere penalty when power supply is beyond the contract capacity.
The detailed data are shown in Table III. The operation ranges of
the equipments in the cogeneration system are given in Table IV.

According to the history of the plant over the past ten years,
accidental failures of the boiler occur three times in a year, and
that of the grid system occurs five times. The former case needs
two stages of startup, while the latter case needs a single stage.
Whenever electric power failure occurs, the plant would be at
least partially shut down due to the loss of power. It can tolerate
sudden loss of power of 2000 kW without shutting down the
whole operation. In other words, if imported electricity from
the grid system does not exceed 2000 kW, the accidental failure
would not interrupt the operation. When the plant is forced to
shut down completely just because of the lack of enough power,
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TABLE V
PROBABILITY OF BOILER TRIPS FOR MONTE CARLO SIMULATION

TABLE VI
PROBABILITY OF GRID SYSTEM TRIPS FOR MONTE CARLO SIMULATION

it can resume the normal operation within 6 h. However, if the
main boiler fails, two stages of startup are needed. The first stage
is to start the operation of the boilers, while the second stage is
to start the steam turbine. Each stage needs 6 h. The electric
power supply during startup comes only from the grid system.

Considering the heavy penalty in the peak period in the
summer season, the plant has different startup procedures to
reduce the amount of imported electricity. If the first stage of
restart is during the peak or semi-peak period, the plant would
import 8,000 kW instead of 13 000 kW during the Saturday
semi-peak or off-peak period. The plant needs to import 13 000
kW in the second stage no matter what period it is. There are
four months in the summer season and eight in the nonsummer
season. For the boiler’s trip, two stages of startup are necessary.
There are nine combinations of two stages in the summer season
versus six in the nonsummer season. Assuming that the trips
are uniformly distributed, we may calculate the probability of
15 situations, which are shown in Table V. Similarly, Table VI
lists the probability of eight situations for power trips caused
by the failure of the grid system or the steam turbine.

Considering that any one of the nine situations may occur in
any one of the four summer months, then we have 36 combi-
nations for the boiler’s trip in the summer season. In addition,
we have 48 combinations in the nonsummer season. On the av-
erage, the plant has three times the boiler trips in the ten-year
operation history. The total combination of boiler trips in a year
is and that of the grid system trips in a year is

. These two kinds of events are independent

Fig. 5. Contour plots of CP versus COP based on the final ANN meta-model.
(a) CMP = 0 kW. (b) CMP = 1000 kW.

of each other. Together, there are combinations. We
use the Monte Carlo method to simulate them. Following the al-
gorithm proposed in Section IV, we start with 27 experiments to
construct a meta-model. The meta-model then suggests several
candidates of sampling points for the next experiments. For each
experiment, 15 000 runs of Monte Carlo simulations are done
to mimic all the possible power failure scenarios. Estimating
the annual cost at each experiment takes about 1–3 min of CPU
time using a P4 2.6-G computer. The solution of optimum con-
tracting capacity is a three-dimensional space that includes con-
tract capacity in the peak (CP), semi-peak(CMP), and off-peak
periods(COP). The interactive sampling process converges in
the fourteenth batch, and the solution, the optimum contract ca-
pacity, and the corresponding operation conditions of the cogen-
eration system are obtained.

In order to look into the details of the solution space, we fix
one dimension, e.g., CMP, and draw a contour plot of the other
two dimensions. Based on the final ANN meta-model, Fig. 5
shows the contour plots of the annual energy cost with two
fixed values of CMP. Both cases have two optima in the plots.
In other words, this is basically a multi-local-optima system.

In Table VII, we compare the annual energy cost of the three
cases: Case 1 is the original operation under the original con-
tract, Case 2 is the optimum operation under the original con-
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TABLE VII
COMPARISON OF ANNUAL COST AMONG THREE CASES

TABLE VIII
CORRESPONDING OPTIMUM OPERATION CONDITIONS AMONG THREE CASES

DURING SUMMER-SEASON PEAK PERIOD

TABLE IX
CORRESPONDING OPTIMUM OPERATION CONDITIONS AMONG THREE CASES

DURING SUMMER-SEASON OFF-PEAK PERIOD

tract, and Case 3 is the optimum operation under the optimum
contract. Taking the annual total cost of the original operation
under the original contract as the basis, we itemize the total cost
into three categories, i.e., fixed contract demand charge, energy
cost, and penalty charge, to analyze the cost structure. Being the
same for all cases, production loss is not shown in the table.

When taking optimal operation only into consideration, the
plant has an annual cost saving of 5.03%. After integrating the
strategic management decision making with the tactical opera-
tion, the plant has an annual cost saving of 9.09%. We then take
the operation in peak and off-peak periods in the summer season
to illustrate the operation difference among these three cases, as
shown in Tables VIII and IX. The results in the tables indicate
that the cogeneration system should operate in the near-full ca-
pacity to reduce the imported electricity during the peak period
and to increase the imported electricity during the off-peak pe-
riod to take advantage of the TOU rates.

However, heavy penalty charges during the peak period in-
curred by the power trips have made the plant maintain a certain
contract capacity, not a zero contract capacity.

The Monte Carlo simulation alone gives an average picture.
In order to see the consequence of the worst situation, we cal-
culated the annual cost with the condition of all power trips oc-
curring in the peak period. The annual energy cost in this case is
still 92.28% of the basis. It demonstrates that the proposed ap-
proach to optimal energy management integration is resilient.

VI. CONCLUSION

In this paper, a general approach to solve the optimal con-
tracting capacity for a plant with an in-house cogeneration
system was derived. The problem includes the uncertainty
analysis of the power system. We considered all the sce-
narios of accidental power failures and use the Monte Carlo
method to simulate them. We developed a meta-model and
information-theory-based optimization scheme to reduce the
computation load. The results show that the proposed approach
is effectivem and there is a dramatic cost-saving opportunity
for the plant.

The other contribution of this paper is that a comprehensive
analysis of TOU rates with the penalty charge is formulated into
a mixed problem of the optimal contracting and optimum oper-
ation. The approach in this paper is a general algorithm that can
take other uncertain factors, such as the forecast of product price
and fuel cost, into the problem formulation. The final results of
the study show that the best energy management should take
both optimum contracting capacity and optimal operation of a
cogeneration system together into consideration.
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