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Tighter performance specifi cations from worldwide competition 
and ever increasing constraints from environmental and safety 
considerations give the practical driving force for the development 

of advanced control technology (Findeisen and Allgöwer, 2001). Large 
amounts of industrial practice and academic research have made model 
predictive control (MPC) the de facto standard algorithm for advanced 
control in the process industry (Nikolaou, 2001). MPC is a general 
and mathematically feasible scheme to integrate our knowledge about 
a target, process into controller design and operation, which allows 
fl exible and effi cient exploitation of our understanding of a target, and 
thus optimal performance of a system under various constraints. Three 
key factors responsible for the great success of MPC are the incorpora-
tion of a process model, an algorithm considering plant behaviour over 
a future horizon in time, and explicit treatment of constraints (Qin and 
Badgwell, 1999), with the model being foremost and fundamental. 
    For an accurate and reliable prediction of a model, suffi cient informa-
tion input is the most important factor, though algorithms in the model 
are equally important regarding the use of the input information. It is well 
known that combined feedforward plus feedback control can signifi cantly 
improve performance over simple feedback control whenever a major 
disturbance exists. It can be measured before it affects the process output, 
and methods for designing linear feedforward/feedback control systems 
are well documented in standard textbooks such as that of Stephanopoulos 
(1984). Such methods are also suitable for nonlinear systems where the 
effect of measured disturbances (DVs) can be separated from that of 
manipulated variables (MVs). However, for systems where DVs and MVs 
are closely coupled together, a unifi ed model correlating both kinds of 
variables is necessary and should be inverted online. At this time, MPC 
is a ready solution. Just as pointed out by Economou et al. (1986), MPC 
has the capability to combine the advantages of open-loop (feedforward) 
and feedback control. A future horizon in time considered in the MPC 
algorithm means that the effects of measured and unmeasured distur-
bances can be predicted and eliminated (Qin and Badgwell, 1999). 
    Developing a valid model for process dynamics is often the major 
work in the implementation of an advanced control. More than 75% 
of the expenditure in an advanced control project normally goes to 
modelling. Artifi cial neural networks (ANNs) as a process model for 
control purpose are superior to other conventional modelling methods 
for reasons of complexity, accuracy, fl exibility, generality, execution 
speed and cost (Bhat and McAvoy, 1990; MacMurray and Himmelblau, 
1995; Hussain, 1995). They have been widely studied in various model-
based control strategies. Various types of neural networks have been 
studied in the literature of process control, and the multilayered feedfor-
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Model predictive control (MPC) provides a natural 
framework to realize feedforward and feedback control 
for nonlinear systems where the effect of disturbances 
(DVs) cannot be separated from that of manipulated 
variables (MVs).  This study examines the performance 
of MPC with measured DVs as partial inputs of the 
model used, which is termed as combined feedforward/
feedback MPC (CMPC) in contrast to conventional MPC 
using a model without input of any measured DV.  In 
the simulation of a pH process, we demonstrate the 
clear superiority of CMPC over MPC.  In the experi-
ment with a bench-scale ethanol and water distillation 
column, CMPC and MPC using artifi cial neural network 
(ANN) models are applied to the dual temperature 
control problem.  External recurrent neural networks 
(ERNs) with and without a measured DV (feed rate of 
the column) as their partial input are built and employed 
in the experiment, with a result that inclusion of the 
measured DV in the model makes CMPC perform signifi -
cantly better than MPC.  To strengthen practical experi-
ence in applying ANN-based MPC, a detailed procedure 
of the experiment is also documented.

Le contrôle prédictif par modèles (MPC) fournit un cadre 
naturel pour réaliser la régulation anticipée et asservie de 
systèmes non linéaires dans lequel l’effet des perturba-
tions (DV) ne peut être séparé des variables manipulées 
(MV). On examine dans cette étude la performance du 
MPC avec des DV mesurés comme entrées partielles du 
modèle ; on appelle ce modèle le MPC anticipé/asservi 
(CMPC) par contraste avec le MPC conventionnel sans 
entrée de DV mesuré. Dans la simulation d’un procédé 
de régulation du pH, nous démontrons la supériorité 
évidente du CMPC sur le MPC. Dans des expériences de 
distillation d’éthanol et d’eau menées dans un colonne 
de laboratoire, le CMPC et le MPC utilisant des modèles 
à réseaux neuronaux artifi ciels (ANN) sont appliqués au 
double problème du contrôle de la température. Des 
réseaux neuronaux externes récurrents (ERN) avec ou 
sans DV mesuré (débit d’alimentation de la colonne) 
comme entrée partielle sont construits et employés 
dans l’expérience, avec le résultat que l’introduction 
du DV mesuré dans le modèle permet une perform-
ance du CMPC signifi cativement meilleure que celle 
du MPC. Pour renforcer l’expérience pratique quant à 
l’application du MPC basé sur les ANN, la description 
détaillée de l’expérience est également fournie.
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ward type is the one most popularly used (Hussain, 1995). 
Shaw et al. (1997) discussed different structures of ANNs 
suitable for representing process dynamics. However, Hussain 
(1995) after reviewing 100 relevant papers on the subject 
of the application of ANNs to model-based control design, 
concluded that real successful on-line applications are rare. In 
his review paper, Hussain summarized 24 experimental studies 
found in the literature up to 1999. Doherty (1999) also noted 
that the use of neural networks for process modelling and 
control is quite rare in industry.
    In our previous work (Chu et al., 2003), two kinds of the 
most commonly used neural networks, feedforward networks 
(FFNs) and external recurrent networks (ERNs), are examined 
with experiment and simulation, in the framework of multistep 
MPC, in order to show the static offset problem of MPC using 
a FFN model. The experimental results on the dual temperature 
control problem of a lab-scale distillation column for ethanol 
and water and on a pilot-scale distillation system for i-butane 
and n-butane, demonstrate the superiority of ERN based MPC 
over conventional PI control and linear MPC. In the experiment 
of MPC on a lab-scale in-line (tubular) pH process, Doherty 
(1999) used a multi-input and single-output model constructed 
with a radial basis function neural network (RBFN) that takes 
disturbances (fl ow rate and pH value of the inlet waste water) as 
its partial input, and obtained satisfactory performance in both 
the setpoint tracking and the disturbance rejecting.
    The objective of this paper is to examine the performance 
of MPC with a measured DV as partial input of the model used, 
with emphasis on an experimental multi-input and multi-
output (MIMO) system and ANN models. In the following 
context, MPC confi gured in such a way is termed as combined 
feedforward/feedback MPC (CMPC), in contrast to MPC where 
no DV is measured and included into the model explicitly. In 
the second section, the algorithm of MPC and CMPC is stated 
in detail. In the third section, a pH process under both MPC 
and CMPC is simulated, and clear superiority of CMPC over 
MPC is shown. On this simulated pH process, a highly nonlin-
ear and sensitive system where the contributions of the MV 
and the DV to the CV are closely coupled, we also demonstrate 
an unsuccessful attempt to separate the effect of the DV from 
that of the MV. In the fourth section, CMPC and MPC using 
ERN models are implemented on a bench-scale ethanol and 
water distillation column, and their performance is compared 
for this dual temperature control. In order to strengthen 
practical experience of application of ANNs as process models, 
we describe the datasets for training and testing the ERNs in 
detail. In the last section, some concluding remarks are made.
    The reason for using different processes in our simulation 
and experimental studies is that pH neutralization is a familiar 
and typical single-input and single-output (SISO) process with 
strong nonlinear characteristics, and is therefore suitable as a 
concise and effective supplement to our experimental work on 
the MIMO distillation column in revealing the effect of includ-
ing disturbance into the entry of models. The main purpose of 
this paper is to illustrate the usefulness of including disturbance 
in the entry of a model built in any suitable framework. The 
main reason of using ERN models for the distillation column 
and using fi rst-principle models for the pH process is their ease 
of implementation and their familiarity to the authors, though 
the minimal experience in experimental implementation of 
ANN-based MPC is another reason for using ERN models in the 
case of the distillation column. 

Algorithm of CMPC and MPC
Whether the effects of MVs and DVs are separable is of great 
signifi cance to the job of modelling, especially with empirical 
modelling approaches such as ANNs. The data needed for a 
complete model increases exponentially with the number of 
coupled variables, which is a problem of the so-called combina-
tory explosion. For linear systems or nonlinear systems where 
the effects of MVs and DVs on controlled variables (CVs) are 
separable, the principle of superposition holds, and the contri-
bution of each MV or DV is modelled separately. In such cases, 
the combined feedforward/feedback model predictive control 
(CMPC) can be generally represented in Figure 1. In this fi gure, 
vectors u, u, u y, y, y d and d and d d’ contain the MVs, the CVs, the measured d’ contain the MVs, the CVs, the measured d’
DVs and the unmeasured DVs, M is the model of the correspond-M is the model of the correspond-M
ing process G, and M–M–M 1 is the inverse of M. It should be noted 
that the only requirement of Figure 1 is the superposition princi-
ple regardless of whether the system is linear or not.
    However, for most nonlinear systems, it is impossible to 
separate the effects of MVs and DVs on CVs, and CMPC can 
be expressed in Figure 2. The model has an input array of MVs, 
measured DVs and CVs predicted by the model itself:
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where f is a nonlinear function in some proper form, f is a nonlinear function in some proper form, f K, K, K L and 
D are the orders of the model with respect to the CVs, the D are the orders of the model with respect to the CVs, the D
MVs and the measured DVs. For predition into the future, we 
assume didid  = i = i dt–1 for i $ t with  t with  t t being the current instant of t being the current instant of t
time. The reason for using predicted CVs recurrently in the 
model instead of the measured ones is that models taking 
measured CVs as the partial input of the model will result in 
static offset with MPC (Chu et al., 2003). 
    In the dotted line box of Figure 2, iteration is performed 
in every sampling interval to minimize the following objective 
function: 
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through searching for a set of increments for MVs and 
subjected to constraints such as:

P CP C≥P C (3)
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where M = number of CVs, M = number of CVs, M N = number of MVs; N = number of MVs; N P = length of P = length of P
prediction horizon in time steps; C = length of control horizon in C = length of control horizon in C
time steps; ujuju  = MV j; = j = MV j; = j ∆ujuju  = an increment of MVj = an increment of MVj j = an increment of MVj = an increment of MV , defi ned asj, defi ned asj
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yiyiy = measured value for CV i. 
In this study, the Levenberg-Marquardt algorithm (Marquardt, 
1963), as recommended by Ramchandran and Rhinehart 
(1995), is adopted in searching for ∆uj,t + cuj,t + cu  ( j,t + c ( j,t + c j = 1,2,j = 1,2,j …, N and N and N
c = 1, 2, c = 1, 2, c …, C) that which give a minimum of 

j,t + c
) that which give a minimum of 

j,t + c
C) that which give a minimum of C J as defi ned in J as defi ned in J

Equation 2. It should also be noted that in the minimization 
iteration, measured DVs are assumed constant at their current 
values for the time instants ahead.
  MPC has the same algorithm for CMPC as stated above, except 
that no measured DV enters the model for MPC. Both CMPC and 
MPC follow the same solution method and possess three attractive 
properties, namely, dual stability, perfect control and zero offset 
under assumptions such as perfect model, input-output stability 
of the model and its inverse, etc., as analyzed by Economou et 
al. (1986) in the framework of the internal model control (IMC). 
It is clear from Figure 2 and the objective function in Equation 2 
that CMPC provides a feedforward action by including the term 
ymymy , the predicted effect of MVs and measured DVs (if any) on the 
process through the model, as well as a feedback mechanism by 
including h, model mismatch and predicted effect of unmeasured 
DVs on the process. It should also be noted that a feedforward 
action about unmeasured disturbances also exists in both CMPC 
and MPC for their prediction horizon into the future. By the way, 
there are some variants for the objective function in Equation (2) 
for the purpose of stablility, robustness, and effi cient computa-
tion, as introduced by Findeisen and Allgöwer (2001). We also 
noted that the length of prediction horizon (P) has a fundamental P) has a fundamental P
infl uence on the stability of MPC and CMPC in our simulation. In 
this work, P and P and P C are decided based on some principles such as: C are decided based on some principles such as: C
short horizons are desirable from a computational point of view, 
but long horizons are required for closed-loop stability and in 

order to achieve the desired performance (approximation to the 
optimality with infi nite horizons).
    Before getting into specifi c case studies, it is important 
to note that constraints are critical to safety and can be very 
helpful to the performance of a controller. Constraints may 
stem from safety considerations and physical limits, and also 
from the requirements of smooth operation, as a measure 
to improve the behaviour of bad controllers. It takes great 
expertise to pose suitable constraints for a controller in 
industry. In this paper, the constraints in all the cases are posed 
on the upper and lower limits of MVs known from the required 
operation ranges and are the results of steady state analysis 
and previous experience of operation, whereas the maximum 
increment of a MV is set to be approximately one tenth the 
whole range set by the two limits in the case of the distillation 
column and the whole operation range for the pH process.

A Simulated pH Process under CMPC and 
MPC
The pH process is a continuous stirred tank of reactions (CSTR) 
and has been studied by Palancar et al.(1996, 1998) and by the 
authors (Tsai et al., 2002). There are two inlet streams to the 
CSTR, the acid fl ow, an aqueous solution of acetic acid (AcH) and 
propionic acid (PrH) with fl owrate QAQAQ and concentrations CAcHCAcHC ,AcH,AcH A
and CPrHCPrHC ,PrH,PrH A, and the base fl ow, an aqueous solution of sodium 
hydroxide (NaOH) with fl owrate QB and concentration CNaOHCNaOHC ,NaOH,NaOH B. 
The outlet stream has a fl owrate Q ≡ QAQAQ + QB. In the following 
context of this section, all the fl owrates are in L/s, and concentra-
tions are in mol/L. In this single input and single output system, 
the MV is QB and the CV is the pH value of the system. Material B and the CV is the pH value of the system. Material B
balance about the reactor produces the following equations:

Q C QC V
dC

dtAQ CAQ CAcH A AcH
AcH

, = +QC= +QCAcH= +AcH (10)

Q C QC V
dC

dtAQ CAQ CPrH A PrH
PrH

, = +QC= +QCPrH= +PrH (11)

Q C QC V
dC

dtBQ CBQ CNaOH B NaOH
NaOH

, = +QC= +QCNaOH= +NaOH (12)

where t is the time in s, t is the time in s, t CAcHCAcHC , AcH, AcH CPrHCPrHC  and PrH and PrH CNaOHCNaOHC  are concentrations NaOH are concentrations NaOH
of components AcH, PrH and NaOH in the reactor, and V = V = V
1.75 L, is the volume of the reactor. Note that the above three 
equations have an analytical solution one time interval ahead, 
which is helpful to fast execution of the simulation program. The 
pH value can be derived from dissociation equilibrium:

Figure 1. Architecture of CMPC for linear systems and systems where 
the effects of the DVs and the MVs on the CVs are separable.

Figure 2. Architecture of CMPC for systems where the effects of the 
DVs and the MVs on the CVs are not separable.
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where KAcHKAcHK  = 10AcH = 10AcH
–4.75, KPrHKPrHK  = 10PrH = 10PrH

–4.87 at 25°C. At this tempera-
ture, the system has an equivalence point around pH = 8.9. 
For the convenience of statement in the following, we use 
the functionality pH = fph (QA, QB) to denote the relationship 
between pH and QA, QB and B and B t in Equations (10) to (13). Note t in Equations (10) to (13). Note t
that time t has been omitted in the functionality simplicity.t has been omitted in the functionality simplicity.t
    With functionality fpH (fpH (fpH ) above, three models are 
fabricated for CMPC and MPC,
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pH f Q Qm p BQBQ3 0f Q3 0f Qm p3 0m pf Qm pf Q3 0f Qm pf QH A3 0H Af QH Af Q3 0f QH Af Q=3 0=3 0m p3 0m p=m p3 0m p (f Q(f Q3 0(3 0f Q3 0f Q(f Q3 0f QH A3 0H A(H A3 0H Af QH Af Q3 0f QH Af Q(f QH Af Q3 0f QH Af Q ),3 0,3 0 , (16)

where subscript 0 stands for a steady state at which models 
PHm2 and PHm3 are calibrated to be exact. It is seen that the 
fi rst model (PHm1) is a perfect model in which the contribution 
of QA and QB to pH is exactly described, the second model B to pH is exactly described, the second model B
(PHm2) considers the contribution of QA and QB to pH with two B to pH with two B
separate terms, and the third model (pHm3) does not include 
the effect of QA on pH.
    CMPC as coupled with models pHm1 and pHm2, and MPC 
as coupled with model pHm3 are tested in this pH process. To 
test the real nature of MPC and CMPC, no penalty on the MV 
(QB) increments is used and the constraints are loosely set to 
be 0 # QB # 0.0045 ∆QB # 0.0045 in all the tests. A control 
horizon M = 1 and a prediction horizon M = 1 and a prediction horizon M C = 60 are used. In view C = 60 are used. In view C
of stability, it is favourable that C is large enough to include C is large enough to include C
the main transient process of the target according to Findeisen 
and Allgöwer (2001). Of course, C is limited by computation C is limited by computation C
resource. Sampling time has a profound effect on the perform-
ance of both MPC and CMPC as shown in Figure 3. For better 
performance, smaller sampling time should be used. However, 
sampling time is also restricted by computation resource and by 
the physical limits of sampling apparatus. In all the tests of this 
simulation study, the sampling time is chosen to be 5 seconds. 
The starting point of all the tests is a steady state of QAQAQ = QB = 
0.003, CAcHCAcHC ,AcH,AcH A = CPrHCPrHC ,PrH,PrH A = 0.1, CNaOH,BCNaOH,BC  = 0.2, and pH = 7.0, and 
models pHm2 and pHm3 is also calibrated at this state, namely, 
subscript 0 in Equations 15 and 16 means this state. 
    The tests are designed to examine the capability of CMPC 
and MPC as stated above in rejecting disturbances caused by 
QA fl uctuating in the following way: 

Q dA AQ dA AQ dQ d= ±Q dQ dA AQ d= ±Q dA AQ d(Q d(Q dQ d= ±Q d(Q d= ±Q dQ dA AQ d= ±Q dA AQ d(Q dA AQ d= ±Q dA AQ d(A A(A AQ dA AQ d(Q dA AQ d )Q d0Q dQ dA AQ d0Q dA AQ dQ d= ±Q d0Q d= ±Q dQ dA AQ d= ±Q dA AQ d0Q dA AQ d= ±Q dA AQ dQ d003Q dQ d= ±Q d003Q d= ±Q dQ dA AQ d= ±Q dA AQ d003Q dA AQ d= ±Q dA AQ dQ d1 0Q dQ dA AQ d1 0Q dA AQ dQ d= ±Q d1 0Q d= ±Q dQ dA AQ d= ±Q dA AQ d1 0Q dA AQ d= ±Q dA AQ dQ d01Q dQ dA AQ d01Q dA AQ dQ dA AQ d. .Q dA AQ dQ dA AQ d= ±Q dA AQ d. .Q dA AQ d= ±Q dA AQ dQ dA AQ d. .Q dA AQ dQ dA AQ d= ±Q dA AQ d. .Q dA AQ d= ±Q dA AQ dQ dA AQ d. .Q dA AQ dQ dA AQ d= ±Q dA AQ d. .Q dA AQ d= ±Q dA AQ dQ dA AQ d(Q dA AQ d. .Q dA AQ d(Q dA AQ dQ dA AQ d= ±Q dA AQ d(Q dA AQ d= ±Q dA AQ d. .Q dA AQ d= ±Q dA AQ d(Q dA AQ d= ±Q dA AQ dQ dA AQ d003Q dA AQ d. .Q dA AQ d003Q dA AQ dQ dA AQ d= ±Q dA AQ d003Q dA AQ d= ±Q dA AQ d. .Q dA AQ d= ±Q dA AQ d003Q dA AQ d= ±Q dA AQ dQ dA AQ d1 0Q dA AQ d. .Q dA AQ d1 0Q dA AQ dQ dA AQ d= ±Q dA AQ d1 0Q dA AQ d= ±Q dA AQ d. .Q dA AQ d= ±Q dA AQ d1 0Q dA AQ d= ±Q dA AQ d (17)

where dAdAd  is set to be 5, 10, 15, or random numbers between 
0 and 10. Figures 4, 5 and 6 show the results of three tests at 
different levels of disturbance. From the curves in these fi gures, 
it is clear that CMPC with the perfect model pHm1 to account 
for the effect of the disturbance QA, is much superior over MPC 
using the model pHm3 without considering the disturbance 
and over CMPC using the model pHm2

 that attempts to separate the effect of the disturbance (QA) 
from that of the MV (QB), especially when the disturbance 
fl uctuates continuously. These fi gures also show, as expected 
for general nonlinear systems, that the attempt to separate the 
effect of QA from that of QB is useless for this pH process. As B is useless for this pH process. As B
a well-known fact, separation of effects of DVs and MVs for a 
nonlinear system often constitutes a meaningful and hard job 
by itself, and is out of the scope of this paper.
    At the end of this section, we should emphasize that this 
simulation is oversimplifi ed as compared with a real pH process 
with characteristics such as delays of the control action, valve and 
pH electrode, asymmetric response of the electrode to positive 
or negative pH perturbation, etc. This simulated pH process is 
mainly used to demonstrate the difference of CMPC and MPC, 
and is not practical enough to be a study on pH control itself. 
It should also be noted that CMPC is better than MPC only 
for cases where the test disturbance is measured and included 
in the model used. For unmodelled perturbations in setpoint, 
concentration of the basic stream and buffering of the inlet acidic 
stream, CMPC and MPC will have the same performance.

A Distillation Column under CMPC and 
MPC
The Column
This test is carried out on a bench-scale distillation column for 
ethanol and water mixture. The column is depicted in Figure 7 
together with the proportional-integral (PI) controllers. Table 1 
lists the structural and operational parameters of it. It should be 
noted that the isotropic mixture (78.15 °C, 0.8943 mole fraction 
ethanol, at 1 atm) is likely to form at the top of the column.
    From measured step response curves, the four classic 
transfer functions for this column are derived as:
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where, u1 = refl ux valve opening, %, u2 = reboiler heating 
steam pressure, kPa, y1y1y  = top temperature, °C, and y2y2y  = 
bottom temperature, °C. The relative gain array (RGA) of 
Bristol (1966) is calculated as:

1 6043 0 6043

0 6043 1 6043

. .6043. .6043 0. .0

. .6043. .6043 1. .1

−
−

























(22)

which indicates the strong nonlinear characteristics of the 
column.
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Figure 3. Effect of sampling time on the performance of (a) MPC using model pHm3 and (b) CMPC using model pHm2 for the simulated pH process 
subjected to –5% change in the fl owrate of the acid stream. The dash line stands for the setpoint.

Figure 4. Transient curves of the simulated pH process in response to decreases of the fl owrate of the acid stream from 0.003 L/s by 5, 10 and 15%: 
dash line = setpoint, dot line = MPC using model pHm3, dash-dot line = CMPC using model pHm2, and solid line = CMPC using model pHm1.
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The Artifi cial Neural Network Models
MacMurray and Himmelblau (1995) and Doherty (1999) 
addressed the issue of output feedback of feedforward 
networks. The authors (Chu et al., 2003) further observed the 
phenomenon of steady state offset of multistep MPC using a 
series-parallel model such as a FFN with measured CVs as its 
partial input, and accounted for such a phenomenon through 
mathematical analysis. Therefore, as a model of MPC or 
CMPC, the neural networks used in this study are the external 
recurrent neural network (ERN) as shown in Figure 8, which is 
referred to as a parallel model and can be expressed formally 
by Equation (1).
    It is evident that training and testing datasets are crucial 
to the neural network models trained from them. In our 
experience with the distillation column, if neural networks 
are trained with datasets only from simultaneously changing 
top refl ux and bottom heating steam, oscillatory behaviour 
will happen with MPC or CMPC using such networks as the 
model, because neural network models can not distinguish 
effects of MVs on CVs correctly. For the distillation column in 
this work, there are two MVs and one measured DV (the feed 
rate), the following scheme is designed to build the training 
and testing datasets: change the two MVs (top refl ux u1 and 
bottom heating steam u2) sequentially in four patterns, namely 
(1) both u1 and u2 constant, (2) both u1 and u2 changing 
randomly, (3) u1 constant and u2 changing randomly, and (4) 
u1 changing randomly and u2 constant. To incorporate the 
feed rate into the neural networks, in each of the four MV 

patterns, the feed rate is set at three different levels (270, 300, 
330 ml/min). Figures 9 to 11 depict the data in the training 
dataset. It should be noted that the above scheme for collect-
ing training and testing datasets is necessary for systems such 
as the pH process shown above and this distillation column, 
where the effects of MVs and measured DVs are not separable. 
Otherwise, much less effort is needed by modelling the effects 
of MVs and measured DVs on the system output separately by 
independent datasets. Of course, there are other economical 
schemes for plant testing which help to save the labour in 
collecting data necessary for a good model, but this is another 
topic beyond this paper.
    Doherty (1999) discussed the difference between FFNs 
and ERNs, and mentioned that if an ERN is used to predict 
P steps ahead, it is important to train and validate it over a P steps ahead, it is important to train and validate it over a P
prediction horizon of P steps. For the distillation column in this P steps. For the distillation column in this P
work, however, we have found that ERNs from one step ahead 
training and validation work well, and we do not try multistep 
training. The conventional error back-propagation algorithm 
is adopted in training the neural networks. As there are no 
general rules for determining the structure (number of hidden 
layers and number of nodes in each hidden layer, etc.) of 
neural networks, structures of ERNs are fi xed in a trial-and-error 
method in the training stage. In order to avoid over-fi tting, 
the model-validation technique used by Psichogios and Ungar 
(1991) is adopted, namely, the performance of networks in 
predicting the testing data is checked after each epoch of 
learning and the learning process is terminated if the predic-

Figure 5. Transient curves of the simulated pH process in response to increases of the fl owrate of the acid stream from 0.003 L/s by 5, 10 and 15%: 
dash line = setpoint, dot line = MPC using model pHm3, dash-dot line = CMPC using model pHm2, and solid line = CMPC using model pHm1.
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tion error on the testing data is increased by further training. 
The structural parameters determined for the fi nal two ERNs 
(for the top and bottom temperatures respectively) are listed 
in Table 2. Figure 12 presents the testing results from the two 
best-trained ERNs, and it is clear that the predicted curves by 
the two ERNs deviate observably from the measured ones. 
These two ERNs are to be used in CMPC.
    Another two ERNs without the measured DV (feed 
rate) as their partial input, trained with training and testing 
dataset collected at the feed rate of 300 ml/min as reported 
in our previous paper (Chu et al., 2003), are used in MPC for 
comparison to demonstrate the improvement of CMPC using 
ERNs with the feed rate as their partial input over MPC using 
ERNs without input of the feed rate.
    At the end of this subsection, it may be useful to mention 
some details of our practice with network modelling: (1) 
Training and testing were performed with the toolbox of 
Matlab (version 6.5, The MathWorks Inc.) in batches, and 
most default values of the toolbox functions such as learning 
rate were adopted. In every batch, about 10 networks were 
set up and trained. At the end of a batch, the best performing 
network was chosen for further test. Several batches may be 
necessary to get a suitable network model. For every batch 
we gave an upper limit number (100, for instance) of epochs. 

(2) Both the hyperbolic tangent and the sigmoid are common 
used nonlinear functions in neural networks for process control 
use (Hussain, 1999). The former was used without much 
consideration or testing. (3) The input order was initially set 
to be the time of response, and was further adjusted under 
the principle of suitable fi tting accuracy with as small number 
of input data as possible. (4) The input and output data were 
normalized. (5) In the training phase, the identifi cation error 
was calculated by comparing the measured data with those 
predicted one step ahead the current instant. Since the predic-
tion was made with measured inputs, the identifi cation error 
at the end of training was virtually within the measurement 
accuracy. However, as the trained network was used in the 
ERN prediction mode where recurrent CVs were used instead 
of the measured ones, obvious state deviation was observed as 
shown in Figure 12. Though ERN models have errors in predict-
ing states, they performed well in MPC because they predict 
correct gain, as shown in our last paper (Chu et al., 2003). By 
the way, ANN models are able to smooth noise if the training 
dataset is large enough as shown in Figures 11 and 12.

Performance of CMPC and MPC
In our last paper (Chu et al., 2003), we have shown the 
performance of MPC based on ERN models without any 

Figure 6. (a) Transient curves of the simulated pH process in response to random fl uctuations of the fl owrate of the acid stream: dash line = setpoint, 
dot line = MPC using model pHm3, dash-dot line = CMPC using model pHm2, and solid line = CMPC using model pHm1. (b) Random fl uctuations 
of the fl owrate of the acid stream from 0.003 L/s in a range of ±10%.



8 The Canadian Journal of Chemical Engineering, Volume 82, December 2004

measured DV as their partial input against PI control and 
linear model predictive control (LMPC), through a series of 
experiments on this ethanol-water column. The tests of this 
paper compare the performances of CMPC and MPC using 
ERNs with and without the feed rate as their partial input. In 
implementing the ERN-based CMPC and MPC, no penalty 
on the MVs (u1 and u2) is used, namely, all q’s in Equation 2 
are zero. Control horizon (C) for both MVs is one, whereas C) for both MVs is one, whereas C
the prediction horizon (P) is chosen to be 20. Constraints on P) is chosen to be 20. Constraints on P
minimization includes 35% # u1 # 95%, ∆ui # 6%, 55 kPa #
u2 # 145 kPa, and u2 # 12 kPa. Figures 13 to 15 compare the 
capability of CMPC and MPC to reject the disturbance caused 
by 7, 10 and 15% decreases in the feed rate of the column, 
respectively. It is clear from these fi gures that CMPC performs 
better than MPC.

Figure 7. Confi guration of the ethanol and water distillation column.

Figure 8. Structure of an external recurrent neural networks (There 
may be more than one hidden layers).

Table 1. Parameters of the ethanol-water column

pressure 1 atm 
inner diameter 0.1 m 
packing height 1.1 m 
stripping section height 0.9 m 
packing porosity 0.968 
feed rate 400 mL/min 
feed composition 0.30 mole fraction ethanol 

reboiler holdup 0.0257 m3 

bottom holdup 0.0263 m3 

refl ux drum holdup 0.0135 m3 

Figure 9. Training data: top and bottom temperatures (CVs) of the 
ethanol-water column.

Figure 10. Training data: refl ux and reboiler heating steam (MVs) of 
the ethanol-water column.

Figure 11. Training data: feed fl owrate (the measured disturbance) of 
the ethanol-water column.
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Concluding Remarks
The performance of CMPC has been studied in contrast with 
MPC through simulation and experimentation. In the phase of 
simulation, the two control schemes are used to a pH process, 
a highly nonlinear single-input and single-output system. The 
models used for CMPC and MPC have the same analytical 
form as the plant. By taking the fl owrate of the acid stream as 
partial input of the model used, CMPC performs much better 
than MPC that uses a model without the fl owrate as one input, 
for rejecting the disturbance caused by the fl uctuation of the 
fl owrate. The simulation results also demonstrate that the 
attempt to separate the effect of the DV from that of the MV 
is of little use. In the experiment with a bench-scale distillation 
column for ethanol and water, training and testing datasets are 
collected and used to build ERN models correlating CVs, the 
top and bottom temperatures with MVs, the top refl ux and 
the bottom heating steam as well as a measured DV, the feed 
rate of the column. The two ERN models used in CMPC have 
an input window of the feed rate, whereas those two in MPC 
do not include such a window. The superiority of CMPC over 
MPC is evident in this dual temperature control problem. The 
experimental process, especially the part for data collection, is 
also detailed to enrich practical experience in MPC based on 
artifi cial neural networks.
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Table 2. Structural parameters of the two ERNs with the feedrate 
as partial input

number of hidden layer 1 
number of hidden nodes 3 
activation function for hidden nodes hyperbolic tangent 

number of output node 1 
transfer function for output node Linear 
entries in input data set 1 u1(t), …, t), …, t u1(t-17) 

entries in input data set 2 u2(t), …, t), …, t u2(t-17) 

Figure 12. Testing data: top and bottom temperatures of the ethanol-
water column, where solid line = measured and dot line = predicted 
by the two ERNs with the feed rate as their partial input.

Figure 13. Transient curves of the ethanol-water column in response 
to a decrease of the feed rate from 300 to 279 mL/min: dash line = 
setpoint, dot line = MPC, and solid line = CMPC.

Figure 14. Transient curves of the ethanol-water column in response 
to a decrease of the feed rate from 300 to 270 mL/min: dash line = 
setpoint, dot line = MPC, and solid line = CMPC.

Figure 15. Transient curves of the ethanol-water column in response 
to a decrease of the feed rate from 300 to 255 mL/min: dash line = 
setpoint, dot line = MPC, and solid line = CMPC.
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Nomenclature
C length of control horizon, in time stepsC length of control horizon, in time stepsC
C concentration, (mol/L)
d a measured DV or a vector of measured DVsd a measured DV or a vector of measured DVsd
d’ an unmeasured DV or a vector of unmeasured DVsd’ an unmeasured DV or a vector of unmeasured DVsd’
D order of a model with respect to a DVD order of a model with respect to a DVD
G a transfer function of real process
h difference between the measured and predicted values of a 
CV
K dissociation equilibrium constant K dissociation equilibrium constant K
K order of a model with respect to a CVK order of a model with respect to a CVK
L order of a model with respect to a MV
M number of CVsM number of CVsM
M a modelM a modelM
N number of MVsN number of MVsN
P length of prediction horizon, in time stepsP length of prediction horizon, in time stepsP
q penalty weight for a MV
Q fl owrate of the outlet fl ow, L/sQ fl owrate of the outlet fl ow, L/sQ
t time in s or current instant of timet time in s or current instant of timet
u a MV or a vector of MVsu a MV or a vector of MVsu
V volume, LV volume, LV
y a CV or a vector of CVs

Greek Symbol
∆ increment

Superscripts
m predicted by a model
s setpoints setpoints

Suberscripts
d of a measured DV or of a vector of measured DVsd of a measured DV or of a vector of measured DVsd
d’  of an unmeasured DV or of a vector of unmeasured DVsd’  of an unmeasured DV or of a vector of unmeasured DVsd’
u of a MV or of a vector of MVsu of a MV or of a vector of MVsu
max maximum
min minimum
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