
 J. Chin. Inst. Chem. Engrs., Vol. 35, No. 3, 371-379, 2004 

Design and Analyze the Batch Ordering  
Supply Chain System 

Pin-Ho Lin [1]

Department of Chemical Engineering, Nanya Institute of Technology 
Tao-Yuan, Taiwan 320, R.O.C. 

Shi-Shang Jang [2] and David Shan-Hill Wong [3]

Department of Chemical Engineering, National Tsing-Hua University 
Hsinchu, Taiwan 300, R.O.C. 

Abstract─The design and management of a supply chain system have already attracted 
many attentions among process system engineering researchers recently. One of these areas 
is the analysis of logistic management for a supply chain using the system control theory. A 
supply chain can be viewed as a discrete system with lead times and operating constraints. 
In this paper, we use material and information balances to design a discrete dynamic model 
for a batch ordering supply chain system. The explicit transfer function model of the closed 
loop response is obtained by z-transform. The entire chain can be modeled by connecting 
these transfer functions in to a block diagram. In order to derive the z-transform model of 
the batch ordering system, we first use the signal processing technique. The model proves to 
be a very powerful tool that reveals the dynamics characteristic of the system. Moreover, the 
use of the dynamic process control theory allows us to design the inventory level control 
strategies and analyze its dynamics behaviors. Based on the transfer functions in z-transform, 
it becomes possible to explore the stability of a supply chain. Furthermore, we can show the 
effective reduction of the bullwhip effect and improvement of customer satisfaction for a 
batch ordering supply chain by implementing a proportional integral control or a cascade 
control. 
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INTRODUCTION 

During the last decade, supply chain manage-
ment attracts a lot of attentions among the process 
system engineering researchers. One of many chal-
lenges in supply chain management is to control the 
inventory level and to improve custom satisfaction 
simultaneously. Meanwhile, one has to consider the 
control effect of the whole supply chain. “Bullwhip 
effect”, i.e., the magnification of amplitudes of de-
mand perturbations from the tail to upstream levels 
of the supply chain also has to be reduced. 

The ordering policy can be viewed as control 
strategy of its inventory level. Recently, Perea-López 
et al. (2000, 2001) examined the dynamic behavior 
of a supply chain system and analyzed the impact of 
several heuristic control laws, again using time-  
domain simulation. Most of the mathematical models 
on feedback control of supply chain systems are 
time-domain simulation models. For example, Porter 
and coworkers (Porter and Bradshaw, 1974; Brad-

shaw and Porter, 1975; Mak et al., 1976) analyzed 
the feedback control of a supply chain using 
time-domain simulation and D-partition analysis. 
However, for a discrete dynamic system, it is more 
convenient to apply linear control analysis in the 
z-transform domain. On the other hand, in many 
cases, the orders from any unit of a supply chain are 
based on batch policies, i.e., they correct the orders 
from their down stream for many days, and put its 
request to upper stream units only once. Previous 
researches in this area assume each unit of any sup-
ply chain put their orders to its upper stream any time, 
i.e., continuous ordering policy is assumed, but this 
is not true in most cases. Until now, there exists no 
researcher to derive a whole batch ordering model to 
analyze the dynamic behaviors of a supply chain. 

In the literatures, there are many papers in 
studying the discrete consumer demand and batch 
ordering inventory policies. For example, Forsberg 
(1996, 1997) solved the two-level inventory systems 
with the method of Erland distribution. Recently, 
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Axsäter (1997, 1998, 2000, 2001) presented to the 
exact analyses of two echelon inventory problems. In 
addition, Sachan (1984), Teng (1994, 1996) extended 
the classical economic order quantity to establish 
replenishment policies in order to find a minimum 
cost. Andersson and Marklund (2000) applied an ap-
proximate cost function to optimize the performances 
of the decentralized distribution system. Similarly, 
Downs et al. (2001) developed an order up to level 
inventory model using linear programming technique 
to handle the logistic problem. Cachon (1999, 2001) 
also used the order up to level policy to exactly 
evaluate the performances of a batch ordering inven-
tory system. The above works all focused to mini-
mize the systems cost by applying various optimiza-
tion approach under the order up to level inventory 
policy. However the researches did not to propose an 
entire mathematical model to investigate the bull-
whip effect for a batching order system, and this may 
damage the entire supply chain since the whole sys-
tem may not work in stable. 

The causes of the bullwhip effect were presented 
by Lee et al. (1997a, 1997b). They are demands fore-
casting, order batching, price fluctuation, lead time, 
and shortage gaming. Because the bullwhip effect 
distorts the information and results in the misguided 
decisions-making, it is valuable to develop a control 
strategy to reduce the bullwhip effect. Chen et al. 
(2000a, 2000b) quantified the bullwhip effect that is 
due to the effects of demand forecasting and lead 
time. Towill and coworkers (Dejonckheere et al., 
2002; Towill, 1982) examined the role of demand 
forecasting in such systems using transfer function 
analysis. However, they have not discussed the sub-
ject in the context of feedback control. Chen et al. 
(2000b) discussed the merit of using exponential fil-
ter in forecasting, also in a feed-forward context.  

In this study, we first present a batch ordering 
dynamic model using z-transform by multi-rate sam-
pling approach to examine the actions of the supply 
chain system. A batch ordering supply chain model 
that is different from the continuous ordering is ana-
lyzed using z-transform. Analytical forms of the 
closed loop transfer functions are obtained. The 
causes of bullwhip become quite apparent using the 
model and stability analysis. A PI and a cascade con-
trol structures are proposed and controllers are syn-
thesized to reduce the bullwhip effect. 

DERIVATION OF DYNAMIC MODEL FOR 
SINGLE UNIT 

Consider a simple supply chain as shown in Fig. 
1. We assume the demand ways of the customer are 
continuous, then the target node lumps the all de-
mands after a constant period M to place a batch  
order to its upstream node. Now, let I(t) denote the 

actual inventory of the target logistic node at any 
time instant t. For the target node, the amount of 
goods received from its upstream node is denoted by 
YU(t), and the number of products delivered to its 
downstream node is denoted by YD(t). A time delay 
of L is assumed for all delivery actions so that goods 
dispatched at time t will arrive at time t + L. How-
ever, due to need for examination and administrative 
processing, this new delivery is only available to 
customer at t + L + 1. The inventory balance at tar-
get node is given by: 

( ) ( 1) ( ) ( )U DI t I t Y t L Y t= − + − − . (1) 

Due to the delay in delivery, an inventory position 
IP(t) is defined to better monitor the change in in-
ventory: 

( ) ( 1) ( ) ( )U DIP t IP t Y t Y t= − + − . (2) 

We assume that ordering information is commu-
nicated instantaneously. However, D(t), which is de-
fined as the total demands from the all downstream 
nodes at time t will only be processed at time t + 1, 
again due to administrative delay. Therefore, a 
standing order for target node at time t, O(t) is de-
fined as the amount of order to be processed at time t 
+ 1. Moreover, we assume that an order can be ac-
cumulated to the next time step if it is not fulfilled, 
since each customer has only one supplier in our 
simple supply chain. Therefore, the standing order 
for the target node at time t is the sum of the order 
placed at time t, plus any the unfulfilled order: 

( ) ( ) ( 1) ( )DO t D t O t Y t= + − − . (3) 

The actual delivery, corresponding to a control 
valve’s action, has physical limits. If there are 
enough inventory to satisfy the standing order at t − 1, 
all the orders will be delivered. Otherwise, the in-
ventory will be cleared (i.e. the valve is fully open). 
Similarly, if the downstream node already has too 
much inventory, the supplier will just stop delivery 
(i.e. the valve is fully closed), return of goods is not 
taken into consideration. Therefore, 
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For simplicity, let the customer satisfaction be repre-
sented by a backorder defined as the difference be-
tween the total standing order at t − 1 and the amount 
of goods actually delivered at t: 

( ) ( 1) ( )DBO t O t Y t= − − . (5) 

The larger BO, the poorer is the customer satisfac-
tion. 

The z-transform of the above discrete time model 
is given by 

( )( ) ( ) ( )
1

L
U D

zI z z Y z Y
z

−= −
−

z , (6) 

(( ) ( ) ( )
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z )IP z Y z Y z
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zBO z Y z
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−

=
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THE ANALYSIS OF A UNIT UNDER 
PROPORTIONAL ORDERING CONTROL 

POLICY 

The objective of this section is to examine some 
cases of the supply chain operations with a propor-
tional control of inventory levels. Of course, a real 
operation of each unit should be somewhere in be-
tween of these cases. However, such asymptotic 
analysis provides extremely useful insights. The 
downstream demands take place every unit time, but 
the target node places a batch order every M unit 
times.  

A simple P-control can be used: 

( ( ) ( )), , 0,1, 2, 3,
( )

0, otherwise

K SP t IP t t nM n
U t

× − = =⎧⎪= ⎨
⎪⎩

’ 

  (11) 

where SP(t) is the set point of inventory position at 
the target node and K is the proportional gain. The 
z-transform of Eq. (11) by using signal processing 
technique is given as 

(( ) ( ) ( )ME MEU z K SP z IP z= × − ) , (12) 

where the superscripts M and E in Eq. (12) are de-
note the decimator and expander respectively, so the 
term XME (X = SP, IP, …) represents the sequence 
X(t), <t = 0, 1, 2, 3, …> through M-fold decimator 
then proceeding E-fold expander.  

Definitions of decimator and expander 

An M-fold decimator (see Fig. 2(a)) for a se-
quence X(t) <t = 0, 1, 2, 3, …> is defined as 

( ) ( )MR t X M t= × ,  (13) 

where M is a positive integer. So we can derive the 
M-fold decimator by taking a z-transform 

1
1/
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1 2( ) exp
M
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k

kiR z X z
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−
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⎛ − ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
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  (14) 

For example, if M = 2, then the inputs and outputs of 
the decimator are given by 

X(t)  X(0)  X(1)  X(2)  X(3)  X(4)  X(5)  X(6) … 

( )MR t  X(0)    X(2)      X(4)      X(6) … 

Similarly, an E-fold Expander (see Fig. 2(b)) for a 
sequence X(t) <t = 0, 1, 2, 3, …> is defined as 

( / ), if  is a multiple of 
( )

0,                  otherwise
E

X t E t E
R t

⎧⎪= ⎨
⎪⎩

, (15) 

where E is a positive integer. So the z-transform of 
the E-fold decimator can be yielded as  

( ) ( )ER z X z= .  (16) 

If E = 2, then the inputs and outputs of the expander 
are given by 

X(t)    X(0)    X(1)    X(2)    X(3) … 

( )ER t    X(0)  0  X(1)  0  X(2)  0  X(3) … 

   M )t(RM)t(X

  E )t(RE)t(X
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(b)
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Fig. 2. (a) An M-fold decimator; (b) an E-fold ex-
pander. 
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Then, the interchanger of decimator and expander 
can be derived from following the above definitions. 
Firstly, if the sequence X(t) proceeds the M-fold 
decimator, then E-fold expander as depicted in Fig. 
3(a), we denote RME(z) is the z-transform of the se-
quence 

1
/

0

1 2( ) exp
M

ME E M

k

kiR z X z
M M

−

=

⎛ −⎛= ⎜ ⎜
⎝ ⎠⎝ ⎠

∑ π ⎞⎞
⎟⎟ . (17) 

Secondly, it is contrary to the proceeding order in Fig. 
3(a), we consider the configuration in which the 
E-fold expander proceeds the M-fold decimator as 
depicted in Fig. 3(b). The z-transform of the output 
signals is  

1
/

0

1 2( ) exp
M

EM E M

k

kEiR z X z
M M

−

=

⎛ −⎛= ⎜ ⎟⎜
⎝ ⎠⎝ ⎠

∑ π ⎞⎞
⎟ . (18) 

Stability 

In this section, we will examine the stability 
condition for several extreme cases, and the real 
cases for a node should be somewhere in between: 

Case 1: Infinitive high inventory position 
We assume that the upstream supplier has suffi-

cient inventory so that the customer demands are al-
ways satisfied: i.e., YU(z) = z−1U(z). Furthermore we 
assume that the set-point of the target node is suffi-
ciently high so that there will always be sufficient 
inventory to satisfy all customer demands, i.e., YD(z) 
= z−1O(z) = z−1D(z). According to the above assump-
tions and combining the Eq. (12), then the inventory 
position at decimation time becomes 

( ) 1 ( )( ) ( 1)
1 1 1

MM
M K SP z D zIP z z

z K z K z

⎧ ⎫× ⎪ ⎪⎛ ⎞= − −⎨ ⎜ ⎟− + − + −⎝ ⎠⎪ ⎪⎩ ⎭
⎬ , 

  (19) 
with the characteristic equation  

( ) 1 0H z z K= − + = . (20) 

A discrete system is stable if all the roots of the 
characteristic equation lie within the unit circle. Ac-
cording to this rule, we can get 0 ≤ K ≤ 2, thus the 
ultimate gain KU = 2. In this condition, the gain must 
be smaller than 2, otherwise the system must be un-
stable.  

Case 2: Infinitive low inventory position 
If upstream supplier has also sufficient inventory, 

but the inventory position set point of the target node 
is low so that there will always be insufficient in-
ventory to satisfy all customer demands, i.e., YD(z) = 
z−1I(z). Thus, the transfer function of inventory posi-
tion at decimation time can be derived as 

( 1)
1( ) ( )

( 1)
1

n

M M
n

n

K z
zIP z SP z
K zz

z

−
−=

−
+

−

, 1Ln
M
+⎡ ⎤= ⎢ ⎥⎣ ⎦

, 

  (21) 
with the characteristic equation  

( 1)( ) 0
1

n
n K zH z z

z
−

= +
−

= . (22) 

Therefore, if upstream supply is infinite and the in-
ventory position set-point is so low that there is al-
ways insufficient inventory than standing order. 
Moreover, the closed loop transfer function (Eq. (21)) 
is independent of customer demands D(z). Therefore, 
when there is unlimited supply upstream supply but a 
low stock target, the inventory position becomes in-
dependent of fluctuations in downstream demands. In 
addition, basing on the criterion of the stability that 
the stability range is 0 ≤ K ≤ 1, so the ultimate gain 
KU = 1.  

Bullwhip effect  

The bullwhip effect can be represented as ampli-
fication of demand fluctuations from downstream to 
upstream. When there is sufficient supply and high 
stock, substituting the Eq. (12) into Eq. (19), we get 

( 1)( ) ( ) ( )
MM MK z KU z SP z D z× −

= + , 
   M )t(RME)t(X

(a)

b)

  E

1 1z K z K− + − +
  (23) 

(a) 

where the term  

( ) M
M D z⎛ ⎞
(
  E )t(REM)t(X    M

 
Fig. 3. (a) An M-fold decimator proceeding E-fold ex-

pander; (b) an E-fold expander proceeding M-    
fold decimator. 

( ) ( 1)
1

D z z
z

= − ⎜ ⎟−⎝ ⎠
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This equation represents the summation of all cus-
tomer demands during the period of M. That is to say, 
the notation ( )

M
D z  denotes the z-transform of ( )D t , 

it can be defined as    
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(
1

0
( ) ( 1)

M

M M
k

)D t D t M
−

=

= − ×∑ k+ . (25) 

So, tM is a positive integer number, we call it a 
“decimation time”.  

One factor that “bullwhip” is usually attributed 
to is aggressive ordering. We have demonstrated the 
system would become unstable when K is set greater 
than KU = 2, the ultimate gain. Here, we show that 
when there is no change in inventory position set 
point, “bullwhip” effect is found only if the control-
ler gain Kj is set greater than 1. 

Assuming that there is no change in set point, the 
ratio of orders to successive nodes can be expressed 
as: 

| ( ) |
| 1| ( ) |

M

M
U z K

z KD z
=

− + |
. (26) 

The amplitude in demand fluctuations will be ampli-
fied if: 

| ( ) | 1
| 1 || ( ) |

M

M i
U z K

e KD z
= >

− +ω ∀ω . (27) 

By mathematic manipulations, the condition is met 
only if K > 1. It shows that bullwhip is mainly caused 
by high frequency fluctuations in customer demands 
when K > 1, i.e., the manager of the distributing node 
responded too aggressively to short-term fluctuations. 
If K < 1, the magnitude ratio can actually be reduced 
along the chain.  

CLASSICAL CONTROL WITH DEMAND 
FORECASTING 

If we attempt to forecast the customer demands 
and set the inventory position target accordingly, as 
shown in Fig. 4, the closed loop responses of inven-
tory position IP and order to supplier U at the deci-
mation point become: 

( ) ( ) 1( ) ( )
1 ( )

MM F z C zIP z D z
z C z

β × × −
=

− +
, (28) 

( ) ( )( )( ) 1 1
( ) ( )

1 ( )
MM C z F z z

U z D z
z C z

β× × × − +
=

− +
, 

  (29) 

where C(z) is the controller, F(z) is the forecaster 
used to predict the current demand, and β is the func-
tion of lead time L and decimation number M. Chen 
et al. (2000a) suggested the use of exponential filter: 
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Fig. 4. A block diagram of a supply chain system with 

demands forecasting. 

( )
1

F z
z

=
+ −

α
α

.  (30) 

P-only controller 

If the controller C(z) = K in Eqs. (28) and (29) as 
depicted in Fig. 4, it becomes a P-only controller 
mode. From the stability analysis in the previous sec-
tion, we demonstrate the proportional gain must be 
smaller than two. Obeying this limitation we use 
various gains (K = 0.80, 0.85, 0.90) to estimate the 
variance ration of order (U) to demand ( D ). The 
variance ratio, i.e., ( ) / ( )Var U Var D , if its value is 
bigger than one that means the bullwhip effect ap-
pears in this unit. As shown in Fig. 5, when simulat-
ing this result, we assume that the customer demand 
is stochastic, i.e., ( , )d N m∈ σ . Here we use m = 20, 
σ = 4, and the other parameters related to the simula-
tions in this study are given as follows, α = 0.1, β = 
1.5, M = 5, and L = 1. From Fig. 5 the variance ratio 
is bigger than 1.0 while the gain K is not smaller than 
0.9. That is to say, if we use P-control mode with 
demand forecasting, the bullwhip effect can be re-
duced while K < 0.9. However, Figs. 6 and 7 show 
that there is a big offset between the set point and 
inventory position. This offset will result in the ac-
cumulation of a large of backorder and dissatisfac-
tory customer service. The offset is inevitable for a 
P-only controller. In order to avert this flaw in cus-
tomer satisfaction, a PI controller should be imple-
mented. 

PI controller 

A PI controller algorithm in the type of 
z-transformation is written as 

1( ) 1
1

zC z K
z

⎛= +⎜
⎞
⎟−⎝ ⎠τ

, (31) 

where τ is the integer constant. 
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Fig. 5. Estimation of the variance ratio of U/ D  with 
some different K values of P-only controller. 

 
Decimation time 

 
Decimation time 

Fig. 6. Simulation results of P-controller (K = 0.8) with 
demands forecasting at decimation time. 

 
Time 

Fig. 7. Dynamic simulation results of inventory posi-
tion and backorder for a P-controller (K = 0.8) 
with demands forecasting at real time. 

Figure 8 presents the simulation result of the ra-
tio of the variance of a unit under demands forecast-
ing. In case of ( ) / ( )Var U Var D > 1, the bullwhip 
effect appears in this unit. Figure 8 proposes that K = 
0.7, τ = 5 should be implemented to avoid the bull-
whip effect for all decimation time. As shown in Fig. 
9, the offset has been eliminated and the bullwhip 
effect has also diminished by using a PI controller 
with K = 0.7 and τ = 5, and compared Fig. 10 with 
Fig. 7, the backorder (customer satisfaction) is com-
pletely eliminated by the PI controller. Note that the 
fluctuations in the inventory position at decimation 
time still exist. In other words, the long term trends 
in customer demands can be more progressive by the 
further order control policies. Nevertheless, a better 
trend in customer demands and a less bullwhip effect 
for a supply chain system are oppositional goal to each 
other. We will implement a cascade control algorithm 
to coordinate this conflict in the following section. 

 
Decimation time 

Fig. 8. Estimation of the variance ratio of U/ D  with 
some different K values of PI controller and the 
same value of τ = 5. 
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Fig. 9. Simulation results of PI controller (K = 0.7, τ = 
5) with demands forecasting at decimation time.  
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Time 

Fig. 10. Dynamic simulation results of inventory posi-
tion and backorder for a PI-controller (K = 0.7, 
τ = 5) with demands forecasting at real time.  

CASCADE CONTROL MODE 

A cascade control scheme is shown in Fig. 11 
that is composed of a P-only controller and a PI con-
troller. The closed loop transfer functions are given 
by 

( )
( ) ( ) ( ) 1( ) ( )

1 ( ) 1 ( ) ( )
MM F z C z CC zIP z D z

z C z F z CC z
× × −

=
− + × + ×

β , 

  (32) 

( )MU z  
( )

( )
( ) ( 1) ( ) ( ) ( ) ( ) 1

1 ( ) 1 ( ) ( )
C z z F z CC z F z CC z

z C z CC z F z
β× × − × × + × +

=
− + × + ×

 

  ( )
M

D z× .  (33) 

If an exponential filter with α = 0.1 is used for the 
forecaster F(z), too. And two medium gains of K = 
0.7 and 0.8 are used for the inner loop. The following 
PI cascade controller is used  

1( ) 1
1C

C

zCC z K
z

⎛ ⎞
= × +⎜ ⎟−⎝ ⎠τ

. (34) 

With the same value of τC = 5, and the outer loop 
gains of KC = 0.8 and 1.2 are used to calculate the 
variance ratios as plotted in Fig. 12. This graph re-
veals the smaller variability in the place-order action. 
Namely, the bullwhip effect can be lessened more 
effectively by utilizing a cascade control than a PI 
control mode. Likewise, the responses of the inven-
tory position display that the tracks of the inventory 
set point (Fig. 13) can be pursue very well. The 
simulation result (Fig. 14) that there is no backorder 
demonstrates the high customer satisfaction. In 
summary, the bullwhip effect reduction and customer  
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Fig. 11. A cascade control diagram of a supply chain 

with demands forecasting. 

 
Decimation time 

Fig. 12. Estimation of the variance ratio of U/ D of a 
cascade control which is composed of a P-only 
controller (inner loop) and a PI controller 
(outer loop), with some different K and KC 
values and the same value of τC = 5. 

 
Decimation time 
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Fig. 13. Simulation results of a cascade control (K = 0.7, 
and KC = 0.8, τC = 5) with demands forecasting 
at decimation time. 

satisfaction improvement are both improved by using 
the cascade control ordering strategy. 

In
ve

nt
or

y 
&

 B
ac

ko
rd

er
 

V
ar

ia
nc

e 
ra

tio
 o

f o
rd

er
 to

 d
em

an
ds

 
D

em
an

s 
&

 O
rd

er
 

Se
t p

oi
nt

 &
 In

ve
nt

or
y 



378 J. Chin. Inst. Chem. Engrs., Vol. 35, No. 3, 2004 

 

10 20 30 40 50 60 70 80 90 100
-50

0

50

100

150

200

250

Inventory
Backorder

 
Time 

Fig. 14. Dynamic simulation results of inventory posi-
tion and backorder for a cascade controller (K 
= 0.7, and KC = 0.8, τC = 5) with demand fore-
casting at real time. 

CONCLUSION 

In this study we propose a dynamic discrete 
model for a batch replenishment ordering supply 
chain system. In aiming at the supply chain system of 
a batch ordering with continuous customer demands, 
it is the first paper to derive a mathematical 
z-transformation model by signal processing tech-
niques. Thus, the characteristic equations of the 
closed loop transfer functions are obtained. This ap-
proach helps us to analyze easily the stability of the 
supply chain system. Further, the bullwhip effect can 
be investigated. The study proves that bullwhip ef-
fect is inevitable if the standard heuristic ordering 
policy is employed with demand forecasting. Several 
alternative ordering policies were formulated as 
P-only, PI and cascade control schemes. By imple-
menting a PI controller, the good performances of the 
dynamic behaviors can be reached in terms of the 
bullwhip effect reduction and customer satisfaction 
improvement. The offset between the set point and 
inventory level is also eliminated. We further derive 
a cascade control scheme that not only provides effi-
cient control of the inventory position of a supply 
chain unit without causing bullwhip effect, but raises 
the customer satisfaction by providing more active 
tracking of the customer demand. 

NOMENCLATURE 

BO backorder, number of item 
C the transfer function of controller 
D customer demand, number of item 
D  summation of the customer demands 

during the period M, number of item 
M

D  the total customer demands at decima-
tion time domain, number of item 

E E-fold expander 
F exponential filter 
I actual inventory, number of item 
IP inventory position, number of item 
IPM the inventory position at decimation 

time domain, number of item 
K proportional gain 
KC proportional gain of the other loop 
KU ultimate gain 
L lead time, day 
M M-fold decimator 
m mean 
O the amount of orders to be processed, 

number of item 
R the output signal 
SP inventory set point, number of item 
SPM the inventory set point at decimation 

time domain, number of item 
t time, day 
tM decimation time, day 
U the amount of order, number of item 
UM the amount of order at decimation time 

domain, number of item 
YD the number of products delivered to the 

customer from the target node, number 
of item 

YU the number of products from the sup-
plier delivered to the target node, num-
ber of item 

Greek symbols 
α parameter of filter 
β a variable that is function of M and L 
σ variance 
τ integral constant of a PI 
τC integral constant of a cascade control 
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私立南亞技術學院化學工程學系 

 
國立清華大學化學工程學系 

 

供應鏈管理是這十幾年來非常熱門的題目，有非常多的學者專家從事這方面的研究。這一領域上的研究者，大都是將

討論的重心，放在訂貨策略之議題上，使得存貨成本降低，以及如何降低所謂的長鞭效應 (Bullwhip effect) 上。其中之一

就是利用系統程序控制理論來決定訂貨策略，本文將使用此理論觀念，對一批式之訂貨方式的供應鏈系統提出一套離散的

動態模式，然後採用訊號處理的數學方法將之轉換成 z-transform 之型態，來清楚描述供應鏈的運作行為，並詳細說明造成

系統不穩定的因素，以及引起長鞭效應的主因，在此不僅可以用數學加以證明其動態行為，甚至利用程式加以模擬其結果。

結果顯示造成長鞭效應的主因，除了需求的變異外，就是訂貨策略了。 




