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Abstract

In this work, a discrete time series model of a supply chain system is derived using material balances and information flow.

Transfer functions for each unit in the supply chain are obtained by z-transform. The entire chain can be modeled by combining

these transfer functions into a close loop transfer function for the network. The model proves to be very useful in revealing the

dynamics characteristic of the system. The system can be viewed as a linear discrete system with lead time and operating constraints.

The stability of the system can be analyzed using the characteristic equation. Controllers are designed using frequency analysis. The

bullwhip effect, i.e. magnification of amplitudes of demand perturbations from the tail to upstream levels of the supply chain, is a

very important phenomenon for supply chain systems. We proved that intuitive operation of a supply chain system with demand

forecasting will cause bullwhip. Moreover, lead time alone would not cause bullwhip. It does so only when accompanied by demand

forecasting. Furthermore, we show that by implementing a proportional intergral or a cascade inventory position control and

properly synthesizing the controller parameters, we can effectively suppress the bullwhip effect. Moreover, the cascade control

structure is superior in meeting customer demand due to its better tracking of long term trends of customer demand.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Supply chain management has attracted much at-

tention among process system engineering researchers
recently. There are many aspects in supply chain re-

search. One area is the analysis of the logistic problem of

a supply chain using system control theory. While a real

supply chain is a very complex network, we choose to

focus on the material balance and information flow of

the system. Hence, it is possible to derive first principle

models which describe the dynamics of a supply chain

system. Such models can be used as the basis for un-
derstanding supply chain dynamics. Intuitively, the man-

agement of such a system is to maintain the inventory

level of each unit to satisfy the demands from its cus-
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tomers by ordering products from its upper stream of

the supply chain. The ordering policies can be viewed as

a control strategy of its inventory level. The other need

of a supply chain system is to learn the change in the
market, i.e. to forecast the change of the demand from

the orders of the downstreams. The objective of this

work is to obtain a close form solution of the dynamic

model of a supply chain system using z-transform and

analyze the ordering strategy using controller design

principle.

A model of a supply chain was developed in as early

as the 1960s [1]. A review on modeling and analysis of
the supply chain system was provided by Beamon [2].

For example, Porter and coworkers [3–5] analyzed the

feedback control of a supply chain using discrete time

series simulation and D-partition analysis. Recently,

Perea-L�opez et al. [6,7] examined the dynamic behavior

of a supply chain system and analyzed the impact of

several heuristic control laws, using continuous time
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domain simulations. For a continuous time domain

model, it is customary to conduct a theoretical analysis

using the Laplace transform to convert ordinary differ-

ential equations into s-domain transfer functions. For a
system with discrete sampling time, the z-transform is

used to convert the time series model into z-domain

transfer function which can be obtained. These close

form transfer functions allow us to gain an insight into

the stability of the system. Many guidelines for con-

troller designs developed using transfer functions and

frequency analysis can then be applied to devise the

ordering strategy.
A useful model of a supply chain must be able to

reproduce the most important dynamic characteristics

of a supply chain system, the ‘‘bullwhip effect’’. Small

perturbations in the customer demand of the down-

stream units will cause huge perturbations of the orders

to upstream units [8,9]. The bullwhip is usually attrib-

uted to the lead time between ordering and delivery,

aggressive ordering, demand forecasting [10,11]. Towill
and coworkers [12,13] examined the role of demand

forecasting in such systems using the z-transform
transfer function analysis. Recently, they have analyzed

the effect of the ordering strategy [14]. Chen et al. [11]

discussed the merit of using an exponential filter in

forecasting, also in a feed-forward context.

In this work, a supply chain model is analyzed using

the z-transform. Analytical forms of the closed loop
transfer functions are obtained. The causes of bullwhip

become quite apparent using the model and stability

analysis. A PI and cascade control structures are pro-

posed and controllers are synthesized and tuned ac-

cordingly, to eliminate the bullwhip effect. In Section 2

the basic supply chain model and its z-transform will be

introduced.
2. Basic dynamic model

Consider a simple supply chain that has no branch as

shown in Fig. 1. There are three logistic echelons:

warehouse (W ), distributing center (D) and retailer (R)
between the producer (P ) and customer (C). Let IjðtÞ
denote the inventory of each logistic node at any time

instant t, where j 2 fW ;D;Rg. The amount of goods

delivered to node j by the upstream node i is denoted by

YijðtÞ, ij 2 fPW ;WD;DR;RCg. A time delay of L is as-

sumed for all delivery actions so that goods dispatched
Material flow

Plant D.C.Warehouse

PWy WDy

WPU DWU

Information flow

Fig. 1. A simple s
at time t will arrive at time t þ L. However, due to the

need for examination and administrative processing, this

new delivery is only available to a customer at t þ Lþ 1.

The inventory balance at node j is given by:

IjðtÞ ¼ Ijðt � 1Þ þ Yijðt � LÞ � YjkðtÞ;
jk 2 fWD;DR;RCg ð1Þ

Due to the delay in delivery, an inventory position

IPjðtÞ, j 2 fW ;D;Rg is defined to better monitor the

change in the inventory:

IPjðtÞ ¼ IPjðt � 1Þ þ YijðtÞ � YjkðtÞ ð2Þ

In a decentralized supply chain, the manager aims at

maintaining a certain inventory position. The amount of

orders placed by node j to an upstream node i is denoted
by UjiðtÞ, ji 2 fWP ;DW ;RD;CRg. For example, simple

P -control can be used:

UjiðtÞ ¼ Kj � ðSPjðtÞ � IPjðtÞÞ ð3Þ

where SPj is the set point of the inventory position at

node j. Note that the intuitive setting of this controller is

Kj ¼ 1. The advantages of using the inventory position

instead of actual inventory will be evident later in our

analysis. It should be pointed out that the size of the

order placed corresponds to a controller decision. A
controller output has no constraints. We allow the

downstream customer node to order as much as it

wants, with no guarantee that the order can be fulfilled.

Similarly, we allow the downstream node to retract its

order so that UkjðtÞ can be negative if the inventory

position is higher than the set point.

We assume that ordering information is communi-

cated instantaneously. However, an order at time t will
only be processed at time t þ 1, due to administrative

delay. Therefore, a standing order for each node j at

time t, OjðtÞ, j 2 fW ;D;Rg is defined as the amount of

order to be processed at time t þ 1. Moreover, we as-

sume that an order can be accumulated to the next time

step if it is not fulfilled, since each customer has only one

supplier in our simple supply chain. Therefore, the

standing order for node j at time t is the sum of the
order placed plus any unfulfilled order at time t:

OjðtÞ ¼ UkjðtÞ þ Ojðt � 1Þ � YjkðtÞ ð4Þ

The actual delivery, corresponding to a control valve’s

action, has physical limits. If there is enough inventory

to satisfy the standing order at t � 1, all the orders will

be delivered. Otherwise, the inventory will be cleared
RDU

CustomerRetailer

DRy RCy

CRU

upply chain.
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(i.e. the valve is fully open). Similarly, if the downstream

node already has too much inventory, the supplier will

just stop delivery (i.e. the valve is fully closed); return of

goods is not taken into consideration. Therefore

YjkðtÞ ¼
0 Ojðt � 1Þ6 0

Ojðt � 1Þ 06Ojðt � 1Þ6 Ijðt � 1Þ
Ijðt � 1Þ 06 Ijðt � 1Þ6Ojðt � 1Þ

8><
>: ð5Þ

For simplicity, let the customer satisfaction of node j be
represented by a back-order defined as the difference

between the total standing order at t � 1, Ojðt � 1Þ and
the amount of goods actually delivered YjkðtÞ at t:
BOjðtÞ ¼ Ojðt � 1Þ � YjkðtÞ ð6Þ
The larger the BOj the poorer is the customer satisfac-

tion.

The z-transform of the above discrete time model is

given by

IjðzÞ ¼
z

z� 1
ðz�LYijðzÞ � YjkðzÞÞ ð7Þ

IPjðzÞ ¼
z

z� 1
ðYijðzÞ � YjkðzÞÞ ð8Þ

OjðzÞ ¼
z

z� 1
ðUkjðzÞ � YjkðzÞÞ ð9Þ

UjiðzÞ ¼ KjðSPjðzÞ � IPjðzÞÞ ð10Þ

YjkðzÞ ¼
0 z�1OjðzÞ6 0

z�1OjðzÞ 06 z�1OjðzÞ6 z�1IjðzÞ
z�1IjðzÞ 06 z�1IjðzÞ6 z�1OjðzÞ

8><
>: ð11Þ

The corresponding simplified block diagram is given in

Fig. 2.

The above model seems simple. Nevertheless, it cap-
tures the basic dynamic feature of a supply chain system.

A real supply chain usually has many customers, sup-

pliers, and products. In a decentralized system, the in-

ventory dynamics does not really depend on how many

customers the node has, since all customer demands can
1–
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Fig. 2. The block diagram of n
be lumped into an aggregate demand. Obviously, if

every node has sufficient inventory and has the same

transportation delay, the distribution of order would

not affect the system dynamic behavior. We can assume
that different suppliers have different inventory levels

and different transportation delays, and investigate the

optimal order allocations. If the processing of order and

delivery of different products do not interfere with each

other, each product can be viewed as a separate supply

chain. One may impose constraints that total inventory

is limited by storage space and devise an order strategy

accordingly. Various complications can be introduced
and analyzed using our basic model. However, it is

important to understand the basic dynamic behavior,

before such complications are introduced.
3. Stability analysis

The objective of this section is to examine some

asymptotic cases of the supply chain operations with a

proportional control of inventory levels. The dynamic

behavior may or may not involve the transition from

one asymptotic regime to another depending on how
large and how abrupt the change in the customer de-

mand is. However, such asymptotic analysis provides

extremely useful insights.

3.1. Infinite supply and high stock

In this case, we assume that the upstream supplier has

sufficient inventory so that the demand of node j is

always satisfied: i.e. YijðzÞ ¼ z�1UjiðzÞ. Furthermore, we
assume that the set point of node j is sufficiently high so

that there will always be sufficient inventory to satisfy

all customer demands, i.e. YjkðzÞ ¼ z�1OjðzÞ ¼ z�1UkjðzÞ.
The closed loop transfer function can be derived as the

following equation (see Appendix A.1):
–

MIN

1z

z

z

1

Lz

1

ijY

jkY
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+

_

ode j of a supply chain.
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IPjðzÞ ¼
Kj � SPjðzÞ � UkjðzÞ

z� 1þ Kj
ð12Þ

with a characteristic equation:

HjðzÞ ¼ zþ Kj � 1 ¼ 0 ð13Þ

A sampled data system is stable if all the roots of the
characteristic equation lie within the unit circle:

Hjðz�Þ ¼ z� þ Kj � 1 ¼ 0 ) jz�j ¼ jKj � 1j6 1

) 06Kj 6 2 ) Kj;U ¼ 2

Therefore, if upstream supply is infinite and the inven-
tory position set point is sufficiently high that a bang–

bang situation is never reached unless the system

becomes unstable, then the ultimate gain of the feedback

loop Kj;U is equal to 2. It is interesting to note that the

intuitive setting of this controller is Kj ¼ 1, which cor-

responds exactly to the Ziegler–Nichols quarter-decay

tuning results for proportional only control.
3.2. Infinite supply and low stock

If an upstream supplier has sufficient inventory so

that the demand of node j is always satisfied, i.e.

YijðzÞ ¼ z�1UjiðzÞ, but the set point of node j is low so

that there will always be insufficient inventory to satisfy
all customer demands, i.e. YjkðzÞ ¼ z�1IjðzÞ, then, the

following closed loop transfer function and character-

istic equation are obtained (see Appendix A.2):

IPjðzÞ ¼
KjðzLþ1�1Þ

z�1

zLþ1 þ KjðzLþ1�1Þ
z�1

SPjðzÞ ð14Þ

HjðzÞ ¼ zLþ1 þ KjðzLþ1 � 1Þ
z� 1

¼ 0 ð15Þ

It can be shown that whenever Kj P 1, there exists at

least one jz�jP 1 (see Appendix A.3). Therefore, if the

upstream supply is infinite and the inventory position set

point is so low that there is always less inventory than

the standing order, the sufficient condition for the un-

stable feedback loop is Kj > 1. Moreover, the closed
loop transfer function (Eq. (14)) is independent of Ukj.

Therefore, when there is unlimited upstream supply but

a low stock target, the inventory position becomes in-

dependent of fluctuations in downstream demands.
3.3. Limited supply

In this case, we assume that the upstream supplier i
does not have sufficient inventory so that supply to node

j is not dependent on the demand of node j but limited

by the availability of the inventory: i.e. YijðzÞ ¼ z�1IiðzÞ.
In this case, we found the following closed loop transfer

function (see Appendix A.4):
IPjðzÞ ¼
1

z�1
ðIiðzÞ � UjkðzÞÞ IjðzÞP z�1UkjðzÞ

zLþ1�1
ðz�1ÞzLþ1 IiðzÞ otherwise

(
ð16Þ

In Eq. (16), the inventory position of node j depends

neither on the set point nor on the controller gain of the

ordering policy of node j. This result is intuitive. If the
supplier is low in stock, no matter how node j orders, its
inventory position is determined by the stock available

to the supplier.

In Section 4, the ‘‘bullwhip’’ effect is analyzed using
the transfer functions.
4. Bullwhip effect

The bullwhip effect can be represented as an ampli-

fication of demand fluctuations from downstream to

upstream. In the above section, we have seen that cou-

pling between two nodes through the ordering policy is

eliminated when there is insufficient stock in any one

node along the chain. Therefore, propagation of de-

mand fluctuations is only possible when every node has
sufficient stock. When there is sufficient supply and high

stock, substituting the P -control equation, Eq. (10), into
the transfer function (Eq. (12)) we get

UjiðzÞ ¼
Kj � ðz� 1Þ
z� 1þ Kj

SPjðzÞ þ
Kj

z� 1þ Kj
UkjðzÞ ð17Þ
4.1. Aggressive ordering

One factor that ‘‘bullwhip’’ is usually attributed to is

aggressive ordering. We have demonstrated that the

system would become unstable when Kj is set greater

than Kj;U ¼ 2, the ultimate gain. Here, we show that

when there is no change in the inventory position set

point, the ‘‘bullwhip’’ effect is found only if the con-

troller gain Kj is set greater than 1.
Assuming that there is no change in the set point, the

ratio of orders to successive nodes can be expressed as

jUjiðzÞj
jUkjðzÞj

¼ Kj

jz� 1þ Kjj
ð18Þ

The amplitude in demand fluctuations will be amplified

if

jUjiðzÞj
jUkjðzÞj

¼ Kj

jeix � 1þ Kjj
> 1 8x ð19Þ

Further mathematical manipulations will show that the

condition is met only if Kj > 1 (see Appendix A.5).

Fig. 3 is a plot of the magnitude ratio of Eq. (19) at

various values of controller gain (Kj ¼ 0:9, 1.0, 1.1). It
shows that bullwhip is mainly caused by high frequency

fluctuations in customer demand when Kj > 1, i.e. the

manager of the distributing node responded too ag-
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gressively to short-term fluctuations. If Kj < 1, the

magnitude ratio can actually be reduced along the chain.

One might ask, what is the incentive for managers to

order less than what is required to achieve the inventory

target? If the inventory target is large enough that the

safety inventory is able to cover all short-term fluctua-

tions in demand, e.g. safety inventory equals one day of
demand, or three times the variance in demand. Or-

dering slightly less than what is required may reduce

inventory without actually sacrificing customer satis-

faction. Therefore, the managers of the distributing

node will implement less aggressive ordering if they are

confident that the inventory position target is good en-

ough to meet long term trends in demand.
4.2. Demand forecasting

If we attempt to forecast the customer demand and

set the inventory position target accordingly, as shown

in Fig. 4, the closed loop responses of inventory position

IPj and order to supplier Uji become
1z

z
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Fig. 4. The block diagram of node j of a su
IPjðzÞ ¼ � 1� Kj � F ðzÞ � ðLþ 2Þ
z� 1þ Kj

UkjðzÞ ð20Þ

UjiðzÞ ¼
Kj � ððLþ 2Þ � F ðzÞ � ðz� 1Þ þ 1Þ

z� 1þ Kj
UkjðzÞ ð21Þ

F ðzÞ is the forecaster used to predict the current de-

mand. Towill and coworkers [12,13] have demonstrated
that any forecaster will lead inevitably to bullwhip. For

example, ‘‘backlog’’ is a simple policy that just passes

along the last customer demand as the next inventory

target:

F ðzÞ ¼ 1

z
;

UjiðzÞ ¼
Kj

z� 1þ Kj
1

�
þ ðLþ 2Þ � z� 1

z

�
UkjðzÞ ð22Þ

In Fig. 5 is a Bode plot of the magnitude ratio

jUjiðzÞj=jUkjðzÞj with Kj ¼ 0:7. It can be seen that the

bullwhip occurs at all frequencies even though a less

than aggressive ordering policy is adopted.

Chen et al. [10] suggested the use of an exponential

filter:

F ðzÞ ¼ a
zþ a� 1

ð23Þ

Fig. 5 also contains a Bode plot of the magnitude ratio

jUjiðzÞj=jUkjðzÞj using the exponential filter with a ¼ 0:1,
and Kj ¼ 0:7. The bullwhip can be suppressed for most

frequencies.

4.3. Effect of lead time

Eq. (22) indicate that the lead time is a factor for the
bullwhip effect if the supply chain takes demand fore-

casting into consideration of its ordering policy. Fig. 6

demonstrates that a longer lead time will lead to a

stronger bullwhip if one implements P -only control

algorithm and exponential filter with a ¼ 0:1, and

Kj ¼ 0:7. However, without demand forecasting, Eq.

(18) indicates that the lead time is not a factor for the

bullwhip effect.
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In Section 5, we will show that how a better ordering

strategy can be synthesized using principles of controller

design.
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of the P -only controller.
5. Controller synthesis

5.1. Controller tuning criterion

In this section, we assume that the customer demand

is stochastic, i.e. d 2 Nðm; rÞ. However, the average of

demand may be subjected to a low frequency distur-
bance such as a step change or seasonal cyclic changes.

The objective of a simple inventory level controller is to

maintain a given inventory position in the presence of

such a low frequency disturbance. However, in addition

to achieving the inventory position target, the objectives

of a supply chain manager also include setting an in-

ventory position target that is not too high (resulting in
excess inventory costs) or too low (resulting in customer

dissatisfaction due to back-order) compared to the

current average demand. Therefore, a manager should

aim to create a fast response of the order to low fre-
quency demand changes so that the inventory level can

be maintained, but limit the ratio of order to demand to

less than 1 at high frequency. The frequency response of

jUjiðzÞj=jUkjðzÞj of a closed loop supply chain node

should be used for controller design. Standard textbooks

[15] suggest the following two factors to be considered:

1. Bandwidth: the frequency at which the magnitude
ratio is reduced to below 0.7. A wide bandwidth indi-

cates a faster response but poorer noise rejection

capabilities.

2. Resonance peak (RP): the highest value of the ampli-

tude ratio. A higher resonance peak indicates a faster

response but may be more oscillatory. Suitable set-

ting of RP ranges from 1.5 to 2.0.

Note that we only discuss a discrete system; therefore,

the highest frequency is at x ¼ p. Therefore, we can

define a term MRp as the magnitude ratio at x ¼ p:

MRp ¼ jUjiðxÞj=jUkjðxÞkx¼p ð24Þ

Since a higher MR implies a wider bandwidth and a

faster response, it results in more severe bullwhip.

Therefore the following approximate tuning criterion

can be used:

‘‘Choose a controller setting with MRp in the range

of 0.8 to 1; and RP in the range 1.5 to 2’’.
5.2. Simple feedback with demand forecast

Fig. 7 gives the frequency response of a unit with a

proportional only controller to its inventory position
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and an exponential filter (a ¼ 0:1) with several different

controller gains. It can be shown that with a controller

gain lower than one, the bullwhip effect of the unit is

suppressed, and Kj ¼ 0:7 should be very appropriate
according to the rule in the previous section. Fig. 8

shows that when Kj ¼ 0:7, the bullwhip can be attenu-

ated, while a high gain of Kj ¼ 1:0 will lead to a sub-

stantial bullwhip. The responses of Uji and IPj to a step

change in customer demand Ukj according to Eqs. (20)

and (21) with a proportional gain Kj ¼ 0:7 are shown

in Fig. 9. The demand is originally stochastic with d 2
Nð20; 4Þ, but the average of the demand is subjected to a
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step increase to d 2 Nð40; 4Þ at t ¼ 20 and a step de-

crease to d 2 Nð30; 4Þ at t ¼ 60. There is a large offset

between the inventory position and set point. This offset

will lead to accumulation of a large amount of back-
order and low customer satisfaction.

Since an offset cannot be avoided, customer dissatis-

faction is inevitable for a P -only controller. To avoid

this offset, a PI controller can be used:
CjðzÞ ¼ Kj � 1

�
þ 1

sI ;j

z
z� 1

�
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The closed loop Bode plot of one supply chain unit with

a PI controller is shown in Fig. 10. Fig. 10 shows that

given sI;j ¼ 3:3, the bullwhip effect still appears even the

controller gain, Kj is less than one. Fig. 11 gives the
contour plot of both RP and MRp as a function of Kj

and sI ;j. A setting of Kj ¼ 0:67 and sI;j ¼ 3:3 will give an

MRp � 1 and a RP � 2. In Fig. 12, the dynamic simu-

lation of a supply chain unit with a stochastic customer

demand and a PI controller with Kj ¼ 0:67, and sI;j ¼
3:3 is shown. The offset is eliminated and the bullwhip is

suppressed, but the response of the inventory position is

slow. This causes low customer satisfaction during the
transient period. Fig. 13 gives the frequency response of

IPjðzÞ=UkjðzÞ with the above PI setting. It is shown that

this system is over-damped, and the tracking is hence

slow.
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Fig. 10. Frequency responses of jUjiðzÞj=jðUkjðzÞj with some different

Kj values of PI controller and the same value of sI ;j ¼ 3:3.
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resonant peak (RP, dot lines) as functions of Kj and sI ;j of a PI con-

troller.
5.3. Cascade control

An obvious alternative to be used is a cascade control

scheme as shown in Fig. 14. In the cascade scheme, the
set point of the inventory position is raised (or reduced)

if the filtered ‘‘long term’’ trend of the difference between

the actual inventory position and the demand is less

than (or greater than) zero. However, this target is only

loosely pursued in the inner loop. The closed loop

transfer functions are given by

IPjðzÞ ¼
CjðzÞ � CCjðzÞ � F ðzÞ � ðLþ 2Þ � 1

z� 1þ CjðzÞ � ð1þ CCjðzÞ � F ðzÞÞ UkjðzÞ

ð26Þ

UjiðzÞ

¼CjðzÞ�ððLþ2Þ�CCjðzÞ�F ðzÞ�ðz�1ÞþCCjðzÞ�F ðzÞþ1Þ
z�1þCjðzÞ�ð1þCCjðzÞ�F ðzÞÞ

�UkjðzÞ ð27Þ

If an exponential filter with a ¼ 0:1 is used for the

forecaster F ðzÞ, and a medium gain of Kj ¼ 0:8 is used

for the inner loop, and the following PI cascade con-

troller is used, then

CCjðzÞ ¼ KC;j � 1

�
þ 1

sIC;j

z
z� 1

�
ð28Þ

With sIC;j ¼ 5:5, the Bode plot (Fig. 15) of the closed
loop transfer function shows that the bullwhip can be

eliminated for high frequency cases with its outer loop

gain close to one and inner loop gain slightly lower than

one (Kj ¼ 0:8). The resonance peak and the bandwidth

of this case are much higher than in the pure PI case as

shown in Fig. 11. Fig. 16 shows the contour plot of RP

and MRp with respect to KC;j and sIC;j. The selection

space of the outer loop is much wider than in the pure PI
case as shown in Fig. 11. Fig. 17 shows that a selection

of KC;j ¼ 1:05 and sIC;j ¼ 5:5 for the outer loop and Kj ¼
0:8 for inner loop, works very well without the bullwhip

effect. Fig. 13 also shows that IPjðzÞ=UkjðzÞ is under-

damped with a wider bandwidth than in the PI control

scheme. Therefore the cascade control scheme results in

better tracking of the set point during the transition

period. The period with back-order and the magnitude
of back-order are both smaller. Hence customer satis-

faction is also higher compared with the PI.
5.4. Controller evaluation

In a realistic system, a different cost measure can be

imposed by assigning the actual cost of inventory, cost

of transportation, cost of order processing, etc. How-

ever, results of studies using such cost measures will
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Fig. 12. Dynamic simulation results of a supply chain unit with demand forecasting and a PI controller with Kj ¼ 0:67 and sI ;j ¼ 3:3.
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invariably depend on the cost value actually assigned.

Such values vary case by case. Hence, we choose to use

more basic indices to evaluate our controller:

1. Integral absolute error (IAE): cumulative difference
between actual controlled variable: inventory posi-

tion and its set point value to evaluate controller per-

formance.

2. Bullwhip (BW): cumulative difference of jUji=Ukj � 1j
to indicate the bullwhip effect.

3. Back-order (BO): cumulative difference between

inventory and customer demand when there is not

enough inventory to indicate customer satisfaction.
4. Excess inventory (EI): cumulative difference between

inventory and customer demand when there is more

inventory than customers to indicate the cost of in-

ventory.
z

1
MIN

1−z

z

z

1

Lz

1

ijY

jkY

jI

+

_

e to a supply chain unit.
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Table 1 listed the four indices obtained by using P -
control, PI-control and cascade control. While bullwhip

can be reduced by detuning the gain of the P controller,

the IAE and BO deteriorate significantly because P -
control fails to bring the system to the proper target. PI-

control is able to reduce the bullwhip without sacrificing

controller performance. Customer satisfaction is im-
proved and excess inventory is also reduced. If a cascade

control is used, BW and BO can be further reduced but

IAE and ET become slightly inferior than in the PI

scheme.
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Fig. 16. Contour diagram of magnitude ratio (MRp, solid lines) and resonant

with a P -only inner loop controller (Kj ¼ 0:8).
6. Conclusions

The continuous replenishment ordering policy for a

distribution node in a supply chain was analyzed using
the z-transform. Characteristic equations of the closed

loop transfer functions are obtained. Stability of the

system was investigated. The bullwhip effect is also an-

alyzed. The study proves that the bullwhip effect is in-

evitable if the standard heuristic ordering policy is

employed with demand forecasting. Several alternative

ordering policies were formulated as P -only, PI and

cascade control schemes. Guidelines based on tradi-
tional controller tuning methods were provided. By

implementing a PI controller, the bullwhip effect of a

supply chain unit can be suppressed but long term

trends in customer demand can be tracked. The cascade

control scheme not only provides efficient control of the

inventory position of a supply chain unit without caus-

ing the bullwhip effect, but raises the customer satisfac-

tion by providing more active tracking of the customer
demand.

While this study investigated the basic dynamic be-

havior and controller design of a simple model supply

chain, there are many possibilities of future works using

this approach. Currently, we are looking at how ad-

vanced process control methods such as model predic-

tive control can be used. Moreover, while continuous

replenishment was practiced, batch ordering is actually
more common in most supply chains. Use of the z-
transform allows us to apply multi-rate sampling tech-

niques to analyze batch ordering strategy. Furthermore,

one possible way to reduce bullwhip is to allow the
1 1.2 1.4

,j

1.0 1.1 

peak (RP, dot lines) as functions of KC;j and sIC;j of a cascade controller
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Table 1

Performance indices of different control schemes

Control mode P -control PI control Cascade control

Parameters Kj ¼ 0:7 Kj ¼ 1:0 Kj ¼ 0:67, sI ;j ¼ 3:3 Kj ¼ 0:8, KC;j ¼ 1:05, sIC;j ¼ 5:5

IAEa 3574 2728 454 819

BWb 9.68 28.7 9.03 7.91

BOc 19,958 11,748 1879 1195

EId 20 20 2138 2379

a IAE ¼
R1
0

jSPjðtÞ � IPjðtÞjdt.
b BW ¼

R1
0

jUjiðtÞ=UkjðtÞ � 1jdt.
c BO ¼

R1
0
ðYjkðtÞ � OjðtÞÞdt.

d EI ¼
R1
0
ðIjðtÞ � YjkðtÞÞdt.
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upstream nodes to access customer information several

levels downstream, i.e. to make the system more cen-

tralized and reduce the number of decision levels. In our

case of a single chain network, this would be equivalent

to lumping several levels into a single node. The ap-

propriate ordering strategy for remaining nodes would

be the same. If there are several customers and the

system is completely centralized, there will be no or-
dering action. The manipulated variables become the

delivery commands sent to each node by the centralized

decision unit. The system becomes a MIMO system. We

can apply the same approach to analyze its behavior.

Various complications discussed at the end of Section 2

can also be introduced to make the model more realistic.
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Appendix A

A.1. Derivation of the closed loop transfer function at

infinite supply and high stock

If we assume that the supplier has unlimited supply,

delivery to node j will be according to what has been

ordered:

YijðzÞ ¼ z�1OiðzÞ ¼ z�1UjiðzÞ ðA:1:1Þ

Moreover, if node j has maintained a high stock level, it

will be able to deliver all the customer orders:

YjkðzÞ ¼ z�1OjðzÞ ¼ z�1UkjðzÞ ðA:1:2Þ

Therefore, the inventory position balance (Eq. (8)) can

be rewritten as

IPjðzÞ ¼
1

z� 1
ðUjiðzÞ � UkjðzÞÞ ðA:1:3Þ

Substituting the ordering policy of node j (Eq. (10)) into
the above equation, we get
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IPjðzÞ ¼
1

z� 1
ðKjSPjðzÞ � KjIPjðzÞ � UkjðzÞÞ ðA:1:4Þ

Simple rearrangement yields

1

�
þ Kj

z� 1

�
IPjðzÞ ¼

1

z� 1
ðKjSPjðzÞ � UkjðzÞÞ ðA:1:5Þ

which can be further simplified into Eq. (12).

A.2. Derivation of the closed loop transfer function at

infinite supply and low stock

If an upstream supplier has an infinite supply, it will

deliver according to the order, as in Eq. (A.1.1). How-

ever, if node j keeps a low stock so that there is always

less inventory than the amount ordered by the customer,

delivery is limited by the inventory:

YjkðzÞ ¼ z�1IjðzÞ ðA:2:1Þ

Therefore, substituting Eqs. (A.1.1) and (A.2.1) into the

inventory position balance in Eq. (8), we get

IPjðzÞ ¼
1

z� 1
ðUjiðzÞ � IjðzÞÞ ðA:2:2Þ

Using Eqs. (7) and (8), the relation between the actual

inventory and the inventory position is given by

IjðzÞ ¼ IPjðzÞ þ
zðz�L � 1Þ

z� 1
YijðzÞ

¼ IPjðzÞ þ
z�L � 1

z� 1
UjiðzÞ ðA:2:3Þ

The amount order is determined by P -control (Eq. (10));
therefore,

IjðzÞ ¼ IPjðzÞ þ
z�L � 1

z� 1
KjðSPjðzÞ � IPjðzÞÞ ðA:2:4Þ

IPjðzÞ ¼
1

z� 1
KjSPjðzÞ
�

� KjIPjðzÞ � IPjðzÞ

� z�L � 1

z� 1
KjðSPjðzÞ � IPjðzÞÞ

�
ðA:2:5Þ

Simplification and rearrangement give

IPjðzÞ ¼
1

z� 1

zLþ1 � zL þ zL � 1

ðz� 1ÞzL KjSPjðzÞ
�

� 1

�
þ zLþ1 � zL þ zL � 1

ðz� 1ÞzL Kj

�
IPjðzÞ

�
ðA:2:6Þ

z
z� 1

 
þ KjðzLþ1 � 1Þ

ðz� 1Þ2zL

!
IPjðzÞ ¼

zLþ1 � 1

ðz� 1Þ2zL
KjSPjðzÞ

ðA:2:7Þ

1

�
þ KjðzLþ1 � 1Þ

ðz� 1ÞzLþ1

�
IPjðzÞ ¼

zLþ1 � 1

ðz� 1ÞzLþ1
KjSPjðzÞ

ðA:2:8Þ
Eliminating the denominator term ðz� 1ÞzLþ1 and re-

arrangement produce the closed loop transfer function

and characteristic equations (14) and (15).

A.3. Derivation of the ‘‘Stability’’ limit of K at infinite

supply and low stock

By rearranging Eq. (15) yields

zLþ1 þ KjzL þ KjzL�1 þ � � �Kjzþ Kj ¼ 0 ðA:3:1Þ

If we assume rm (m ¼ 1; 2; 3; . . . ; Lþ 1) are the roots of

Eq. (A.3.1), then

jKjj ¼
Ym¼Lþ1

m¼1

jrmj ðA:3:2Þ

From the above Eq. (A.3.2) we know if Kj > 1, there

must be at least one root in Eq. (A.3.1), whose magni-

tude is bigger than one.

A.4. Derivation of the closed loop transfer function a

limited supply

If the supplier node i has insufficient inventory, then

its delivery is limited by its stock level instead of the

demand of node j:

YijðzÞ ¼ z�1IiðzÞ ðA:4:1Þ

The inventory position becomes

IPjðzÞ ¼
1

z� 1
ðIiðzÞ � zYjkðzÞÞ ðA:4:2Þ

When node j keeps a high stock as given in Eq. (A.1.2)

IPjðzÞ ¼
1

z� 1
ðIiðzÞ � UkjðzÞÞ ðA:4:3Þ

When node j keeps a low stock

IPjðzÞ ¼
1

z� 1
ðIiðzÞ � IjðzÞÞ

¼ 1

z� 1
IiðzÞ
�

� IPjðzÞ �
zðz�L � 1Þ

z� 1
YijðzÞ

�

ðA:4:4Þ

Substituting Eq. (A.3.1) into the above equation and

rearrangement give

1

�
þ 1

z� 1

�
IPjðzÞ ¼

1

z� 1
IiðzÞ
�

� ðz�L � 1Þ
z� 1

IiðzÞ
�

¼ zLþ1 � 1

ðz� 1Þ2zL
IiðzÞ ðA:4:5Þ

Further simplification gives

IPjðzÞ ¼
zLþ1 � 1

ðz� 1ÞzLþ1
IiðzÞ ðA:4:6Þ
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A.5. Derivation of the ‘‘bullwhip’’ limit of Kj

By taking the square of the norms in Eq. (18), we get

jUjiðzÞj2

jUkjðzÞj2
¼

K2
j

ðeix þ Kj � 1Þðe�ix þ Kj � 1Þ ðA:5:1Þ

Expanding

jUjiðzÞj2

jUkjðzÞj2
¼

K2
j

ð1þ 2ðKj � 1Þ cosxþ ðKj � 1Þ2Þ

¼
K2

j

ðK2
j � 2Kj þ 2þ 2ðKj � 1Þ cosxÞ

ðA:5:2Þ

Therefore,

jUjiðzÞj2

jUkjðzÞj2
¼

K2
j

ðK2
j þ 2ðcosx� 1ÞðKj � 1ÞÞ > 1

8x if Kj > 1 ðA:5:3Þ
References

[1] J.W. Forrester, Industrial Dynamics, MIT Press, Cambridge,

MA, USA, 1961.

[2] B.M. Beamon, Supply chain design and analysis: Models and

methods, International Journal of Production Economics 55

(1998) 281–294.

[3] B. Porter, A. Bradshaw, Modal control of production-inventory

systems using piecewise-constant control policies, International

Journal of Systems Science 5 (1974) 733–742.
[4] A. Bradshaw, B. Porter, Synthesis of control policies for a

production-inventory tacking system, International Journal of

Systems Science 6 (1975) 225–232.

[5] K.L. Mak, A. Bradshaw, B. Porter, Stabilizability of production-

inventory systems with retarded control policies, International

Journal of Systems Science 7 (1976) 277–288.

[6] E. Perea, I. Grossmann, E. Ydstie, T. Tahmassebi, Dynamic

modeling and classical control theory for supply chain manage-

ment, Computers & Chemical Engineering 24 (2000) 1143–1149.

[7] E. Perea-L�opez, I.E. Grossmann, B.E. Ydstie, T. Tahmassebi,

Dynamic modeling and decentralized control of supply chains,

Industrial &Engineering ChemistryResearch 40 (2001) 3369–3383.

[8] H.L. Lee, V. Padmanabhan, S. Whang, The bullwhip effect in

supply chains, Sloan Management Review 38 (1997) 93–102.

[9] H.L. Lee, V. Padmanabhan, S. Whang, Information distortion in

supply chain: The bullwhip effect, Management Science 43 (1997)

546–558.

[10] F. Chen, J.K. Ryan, D. Simchi-Levi, The impact of exponential

smoothing forecasts on the bullwhip effect, Naval Research

Logistics 47 (2000) 269–286.

[11] F. Chen, Z. Drezner, J.K. Ryan, D. Simchi-Levi, Quantifying the

bullwhip effect in a simple supply chain: The impact of forecast-

ing, lead times, and information, Management Science 46 (2000)

436–443.

[12] D.R. Towill, Dynamic analysis of an inventory and order based

production control system, International Journal of Production

Research 20 (1982) 671–687.

[13] J. Dejonckheere, S.M. Disney, M.R. Lambrecht, D.R. Towill,

Transfer function analysis of forecasting induced bullwhip in

supply chains, International Journal of Production Economics 24

(2002) 133–144.

[14] J. Dejonckheere, S.M. Disney, M.R. Lambrecht, D.R. Towill,

Measuring and avoiding the bullwhip effect: A control theoretic

approach, European Journal of Operating Research 147 (2003)

567–590.

[15] D.R. Coughanowr, L.R. Koppel, Process Systems Analysis and

Control, McGraw-Hill International, 1965.


	Controller design and reduction of bullwhip for a model supply chain system using z-transform analysis
	Introduction
	Basic dynamic model
	Stability analysis
	Infinite supply and high stock
	Infinite supply and low stock
	Limited supply

	Bullwhip effect
	Aggressive ordering
	Demand forecasting
	Effect of lead time

	Controller synthesis
	Controller tuning criterion
	Simple feedback with demand forecast
	Cascade control
	Controller evaluation

	Conclusions
	Acknowledgements
	Appendix A
	Derivation of the closed loop transfer function at infinite supply and high stock
	Derivation of the closed loop transfer function at infinite supply and low stock
	Derivation of the ``Stability'' limit of K at infinite supply and low stock
	Derivation of the closed loop transfer function a limited supply
	Derivation of the ``bullwhip'' limit of Kj

	References


