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This work presents a novel optimization method capable of integrating ordinal optimization (OO)
and simulated annealing (SA). A general regression neural network (GRNN) is trained using
available data to generate a ‘‘rough’’ model that approximates the response surface in the feasible
domain. A set of ‘‘good enough’’ candidates are generated by conducting a (SA) search on this
“‘rough model”’. Only candidates accepted by the SA search are actually tested by evaluating their
true objective functions. The GRNN model is then updated using these new data. The procedure is
repeated until a specified number of tests have been performed. The method (SAOO + GRNN) is
tested the well-known paper trim loss problem. SAOO + GRNN approach can substantially reduce
the number of function calls and the computing time far below those of simple ordinal optimization
method with such as horse race selection rule, as well as straightforward simulated annealing.
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1. Introduction

The solution of large scale combinatorial optimiza-
tion, or mixed integer programming (MIP) problem is
very important in process and product development
(Davis, 1999). Whereas many process designs
constitute networking and scheduling problems,
product developments such as drug design, catalyst
synthesis and solvent selections also involve combi-
nations of molecular building blocks.

One category of solutions to IP problems is to solve
the relaxed LP or NLP problem; these solutions use
branch-and-bound or another tree-search method to
search the integer variable space (Floudas, 1999;
Edgar et al., 2001). Such methods are usually very
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efficient if provided that the number of integer
variables is not too large and the relaxed LP and
NLP problems have a well-behaved response surface.
The solution obtained is a local maximum and global
optimality can be guaranteed in some cases.

Another category of solutions is using heuristic
methods such as simulated annealing (SA, Kirkpatrick
et al., 1983), and genetic algorithms (GA, Holland,
1975). Heuristic methods are often used to solve large
scale combinatorial optimization problems. Heuristic
based methods are simple to program and normally
effective in locating an adequate solution. However,
the optimality of the solution cannot be guaranteed.

Ho and coworkers (e.g., Ho ef al., 1992) introduced
ordinal optimization to assess the effectiveness of the
heuristic based decision methods. Using probability
theory, they explained why heuristic methods are
effective in locating a ‘‘good enough’ solution.
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Moreover, they demonstrated how a ‘‘rough’” model,
despite its lack of precision, can improve the
efficiency of a search for a ‘‘good enough’’ solution.

Considered a numerical experiment that includes a
set of N = 1000 candidates for the optimality. Let Z be
the number of candidates selected by some model.
The alignment number K is the actual number of
points ranked among the top G candidates that are
actually selected. Lau and Ho (1997) found that K
depends only on the distribution of the fitness values
(the shape of the ordinal performance curve OPC),
and the accuracy of the model. Five categories of OPC
(Flat, Neutral, U-shaped, Bell-shaped and Steep) are
presented by the original works of Ho and co-workers
(e.g., Lau ad Ho, 1997). A model accuracy parameter
W is defined. When W =0.5, the error of the model
span the whole range of distribution values. There is
non-zero probability that the poorest sample is
predicted to be a good enough solution. They also
showed that even with such poor models, the
alignment number K can be increased significantly
when a horse race selection rule is used.

However, ordinal optimization theory does not
specify how such a rough model can be built. Various
methods for constructing such a ‘‘rough’’ model were
proposed in the literature. For example, Ho et al.
(2001) employed heuristic knowledge of the nature of
the solution to improve solution to the Witsenhausen
problem. The model used is problem specific. Luo et
al. (2001) suggested a method that combined the
concept of ordinal optimization and the genetic
algorithm. Solutions that are sufficiently fit are
crossbred to generate candidates of good solutions.

Simulated annealing (SA) is a highly effective
stochastic method for solving combinatorial optimiza-
tion problems based on ideas from statistical
mechanics. The theory has been extensively
researched (Collins et al., 1988) and has many
applications to different problems as discussed in the
literature (Johnston et al., 1989; Eglese, 1990; Ku and
Karimi, 1991; Koulamas et al., 1994; Painton, 1994,
Falcioni and Deem, 2000). In a typical SA scheme, a
reference solution is given initially. A “‘trial’” solution
in the neighborhood of this reference solution is
generated. The objective function of this trial solution
is calculated. If it is lower than the objective function
of the reference solution, then the reference solution is
replaced by the trial solution. Otherwise, an exponen-
tial type transition probability is applied to determine
whether the solution should be updated:
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1 Y )< Y(X)
P = ]exp (M) otherwise (1)

where T is the annealing temperature in the SA, search
procedure, Y(x') is a trial solution and Y(x") is a
reference solution in sequential search procedure. The
temperature is reduced gradually according to a
predetermined annealing schedule to ensure that the
system is not trapped in a local minimum. In the SA
scheme, the actual objective functions are evaluated
for all trial solutions. In a practical engineering
problem, the evaluation may involve lengthy calcula-
tions or even actual experiments. However, the whole
scheme is used to ensure that more potentially
‘‘good’” candidates are sampled. Therefore, the
““actual”’ fitness function need not be applied. A
“‘rough’ prediction model can be used instead for
generating these ‘‘potentially good’’ candidates.
Furthermore, according to ordinal optimization
theory, only a small fraction of these generated
candidates need be tested to ensure alignment.

Genetic algorithm (GA) is also an important branch
in the area of stochastic approach method for solving
combinatorial optimization problems. Combination of
GA and ordinal optimization has been shown to be
effective for sampling strategies (e.g., Zhang et al.,
2002; Luo et al., 2001). Further improvement in
sampling is made possible by including information
theory sampling (Tsujimura and Gen, 1998). There is
no doubt that if we implement GA instead of SA in
our integrated approach mentioned in the following
sections, the result should be of interest to combina-
torial optimization researchers. Due to the limit of our
research resources, we leave this topic for our future
research.

The “‘trim-loss’’ or ‘‘cutting-stock’’ problem is an
integer programming problem that arises in the paper
cutting industry. The main task is to cut paper
products of different sizes from a large roll of
paper to meet customers’ orders. A set of orders can
generally not be met without throwing away some of
the raw paper. The optimum cutting scheme mini-
mizes the waste paper or trim loss. The problem
involves only integer and binary variables, which
appear in a linear objective function, and linear as
well as bilinear constraints. Depending on the
individual problem, the search space can be very
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large. Many methods have been proposed for solving
the problem. For example, Wascher (1990) combined
linear programming methods with heuristic methods
to round the continuous LP-solutions into realizable
integer ones. Goulimis (1990) proposed a branch and
bound and a cut-plane approach. Harjunkoski et al.
(1996) suggested an a priori pattern generation
method to reduce the size of the problem and to
combine it with a MILP strategy. Foerster and
Wischer (1998) employed simulated annealing.
Ostermark (1999) used a genetic hybrid algorithm.
Floudas et al. (1999) applied a global optimization
method known as a-branch-and-bound. Harjunski ef
al. (1998) demonstrated that the ease of finding a
solution depends on how the formulations of the
objective function and the constraints.

This work presents a novel optimization procedure
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by integrating the concepts of ordinal optimization and
simulated annealing. The effectiveness of this
approach was tested using the paper trim loss problem.

2. Methodology

2.1. The SAOO + GRNN procedure

In this paper, we proposed to use SA as the selection
rule in ordinal optimization and a generalized
regression neural network (GRNN) as the meta-
model. Note that the well-known stochastic
approach—the GA can also be implemented as we
mentioned  above. @ The  entire  procedure
(SAOO + GRNN) is described in the steps shown in
Fig. 1. A set of N, initial configurations are sampled

A set of Ny, initial configurations are
sampled randomly

y

Building a rough model using GRNN

A 4

T=Tigja ¥ () =Yy 7 0

Laceept™=

T=uoTl
Jump,. =1, Jump,
A

Generate a trial
configuration and a

f

random number in [0,1]

J

Y

Perform all test
configurations
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Specifed number of
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Maceept= Maccept ™
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!

Fig. 1. Flowchart of the SAOO + GRNN method.
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randomly. The data are trained to generate a ‘‘rough’’
model using GRNN. A SA search is performed using
this “‘rough’’> GRNN model. Note that GRNN model
is a simple regression of the existed model as
described below. At each temperature, trial configura-
tions are generated and accepted according to the
transition probability in Equation 1 but with the fitness
value predicted by the “‘rough’> GRNN model. Nyep,,
configurations are accepted at each temperature. The
annealing schedule is adjusted so that Np. con-
figurations are accepted when the annealing process
iscompleted and the annealed temperature Tj..,. iS
reached. The actual objective functions of these test
configurations are evaluated. These new data are then
used to update the GRNN model. The modeling-
selection-testing cycle is repeated until a specified
maximum number of tests have been carried out.
The details of algorithm SA adopted in this study is
shown in Fig. 2. The procedure is similar to the
general procedure given by van Laarhoven and Aarts
(1987); the Cauchy annealing schedule is employed.
In order that existing data can be efficiently
modeled, the generalized regression network was
used (Specht, 1991). GRNN is based on the estimation
of probability density function from observed samples
by Parzen window estimator. Give a number of around
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existing measurements (x',Y?), i=1,...,M, the
expected value of the output at x is given by

S e[ x)s T a1
Y(x) = —— ‘
Efwzlexp{(x—x’) S 1(x—x’)}

where S is the smooth/bandwidth factor matrix of
the GRNN. GRNN requires no training, only a one-
pass input of all training data is required. Both integer
and continuous inputs can be used in GRNN although
different values of S may be needed. The predictions
of GRNN always fall within the maximum and
minimum of the training data set. Use of GRNN
avoids unreasonable extrapolation.

(2)

2.2. Blind pick (BP) and Horse Race (HR + GRNN)

To demonstrate the effectiveness of our approach,
results are compared with blind pick search (BP) and
an ordinal optimization using horse race as selection
rule and GRNN as the ‘‘rough’ model
(HR + GRNN). In the BP, feasible solutions are
randomly generated. The HR + GRNN procedure is
described in the flow chart shown in Fig. 3. A set of N,

Set temperature equals to an initial temperature T=T;, Jump=1;
Select a feasible configuration as the current configuration X and calculates in

objective function Y (X)
For T>T,,, perform this following.
For n<N.

Temp *

Select a feasible configuration as the current configuration ¥’ so that

x X, +Jump*r*(UB, -x.) r<0
* | x +Jump#r#(x, —LB,) r>0

r=random|[—1, 1]

Calculate the objective function value Y(3') and A=Y (') - Y (X)

If A0
E=%
else

Generate a random number ¥ distributed uniformly between [0, 1]

If x>cxp(—%)

X=X
end

end

n=n+1
end
T=uoT, 2<1
Jump, = 5, -Jump, 1, £1

end

Fig. 2. A SA algorithm.
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1. A set of Ny initial configurations are sampled randomly
2. The data are trained to generate a “rough” model using GRNN
3. A new set of 20 test configurations are selected using horse race selection
rule
i. 1000 trial configurations were generated randomly
ii. Rank all trial configurations using GRNN
iii. Use the top 20 configurations as test configurations
4. Obtain the actual objective functions for test configurations
5. If a maximum number of tests is exceeded, stop: otherwise, go to step 2

Fig. 3. Flowchart of the HR + GRNN method.

initial configurations are sampled randomly. The data
are trained to generate a ‘‘rough’ model using
GRNN. Nqy, trial configurations were generated
randomly and ranked using GRNN predictions. The
top N, configurations were tested by evaluating the
true objective function. The new sampled data were
combined with existing data to update the GRNN
model. The modeling-selection-testing cycles were
repeated until a specific number of tests have been
performed.

3. The trim-loss problem

The trim-loss problem appears when a set of ordered
product reels are to be cut from raw paper reels or
other reels with specified widths. The cutting process
is simply a winding process, where the raw paper is
wound through the slitter and cut by a set knives
positioned on the line, see Fig. 4. The product widths
can rarely be combined to the exact raw paper width,
therefore waste appears during the cutting process.
The main objective is to minimize the trim loss while
demand specifications are satisfied.

A raw paper roll with a width B, must be cut to
satisfy the following order specifications. There are

Trim loss

Fig. 4. A schematic illustration of the trim-loss problem.

705

i=1,...,Idifferent products, n; o4, rolls of product i
with a width b, must be cut. All product rolls are
assumed to be equal length. In order to identify the
best overall scheme, a maximum number of
j=1,...,J; different cutting patterns is postulated.
A pattern is defined by the position of the knives. The
number of repeats of pattern j is given by the integer
variable m;. The existence of a product in a given
pattern is denoted by an integer variable n;;. Another
binary variable y; is introduced to a change in pattern.
If a new pattern is introduced (m; > 0), then y; is
equal to 1. A sample cutting pattern is shown in Fig. 5.

The actual cost of the trim loss is the total amount
of raw materials used, that is, the sum of all repeated
patterns multiplied by a cost factor C, in addition to
the cost of changing knife positions between patterns.
Let the pattern change be weighted by a coefficient c;,
thus a trim loss problem is solve the following
minimization problem:

min Z (Com;+c;j-y;) (3)

mj“'y]'n'jjzl
restricted by the following constraints:

(1) The number of rolls of each product must be
greater than customers’ order:

J
ij R > N orders i=1,...,1 (4)
j

(2) The width of each pattern must be less than the
width of the raw paper roll:

1
N bitng < By j=1,...,0 (5)
i=1

(3) There must be at least one product in a pattern

1
Zniijj j=1,...,J (6)

i=1

(4) The total number of knives is limited to N,

i7max:
I
Z”z‘jf)’j'Ni,max j=1...J (7)
i=1

(5) There must be at least one pattern after a knife
change

mp>y j=1,...,0 (8)
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Fig. 5. The cutting pattern.

(6) The maximum number of pattern repetitions is
limited to M

mp<M-y, j=1,...,7J 9)

(7) The width of cut product in each pattern must
exceed a certain minimum A:

!
Zbi.nzjz(Bmax_A)yj Jj=1....J (10)

The example (Floudas et al., 1999) presented in
Table 1 is used. The problem is to satisfy the
following order b=(290, 315, 350, 455), with
n= (15,28, 21, 30). The maximum width of a
cutting pattern was B,,, = 1850 mm with a tolerance
of A = 100 mm. The maximum number of knives was

Table 1. Parameters of the trim loss sample problem

1 4
(b1,bs, b3, by4) (290, 315, 350, 455)
(”17”27”37’14) (15, 28, 21, 30)
30
Bmax 1850 mm
A 100 mm
J 4
Nmax 5
c 1
c 0.1

No.x = 5. The number of cutting patterns was taken
form the number of products: /=1=4, the cost of a
pattern was determined to be C =1 and the cost of a
knife change was ¢; = 0.1. m; ranges from 0 to 30, y;
are either O or 1, and n;; ranges 0-5. The size of the
search space is 31* x 2* x 66 of the order of 10'°. An
objective function of 19.6 was obtained by Floudas et

al. (1999).

4. Results

The results are shown in Table 2. Average and
standard deviations are statistics of 10 runs. If blind
pick (BP) is used, we found the average of fitness
functions is 22.4 after 5000 tests. A HR + GRNN
procedure improved the results of a BP procedure.
However, the optimal solution cannot be reached in
5000 tests.

A simulated annealing search is applied to the
problem. The following parameters are adopted: the
Cauchy temperature decay ratio is « =0.6. The jump
“‘range’’ of all integer variables is one. The
jump decay ratio of the integer variables m, n are
Nmn = 0.8. The jump decay ratio of the binary
variable y is 5, = 1. The upper bound and lower
bounds are UB =30, UB =1, UB, =5,
LB, =0, LB, = 0 LB, = 0 ThlS SA procedure
was able to ﬁnd the global optlmum if the annealing
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Table 2. Search results of the trim loss problem

Search methods Performance evaluation

Fitness obtained

No. of tests Avg. Std. Time

BP 200 29.2 23 0.2
500 25.7 3.0 0.7

1000 25.6 22 2

2000 23.5 1.9 12

5000 224 0.8 82

HROO + GRNN 200 233 1.3 13

500 21.9 0.9 59

1000 21.1 0.4 148

2000 20.7 0.6 359

5000 20.0 0.2 1873

SA 200 22.5 0.9 27

500 21.5 0.9 81

1000 20.1 0.7 113

2000 19.8 0.2 262

5000 19.6 0 493

SAOO +GRNN 120 224 1.5 7

140 20.5 0.9 17

160 19.7 0.2 31

180 19.6 0 48

200 19.6 0 58

schedule is slow enough that 5000 tests were
performed. If the annealing schedule is hastened so
that only 2000 tests were performed, then the optimal
solution may not reached. Simulated annealing is a
much better heuristic based search procedure than
purely blind pick. By combining simulated annealing
with concepts in ordinal optimization, we can increase
the efficiency of SA by evaluating the objective
functions of only those trial configurations that are
high ranked by the ‘‘rough’’ model.

Using a SAOO 4 GRNN procedure, we found that
global solution value of 19.6 is obtained within 200
tests. The Cauchy annealing parameter is the same as
the above one. Two samples are taken at each
temperature, and Ty, is set so that 20 samples are
accepted in each SA run. Since 100 tests were
generated randomly to provide the initial model,
the SAOO + GRNN reached the solution within
five model-generation-testing cycles. More impor-
tantly, after about 180 tests, the SA + GRNN
procedure actually converged since all runs produce
the same solution.

Since model predictions were made and tests were
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Fig. 6. The evolution of maximum model error W for HR + GRNN.

performed, we were able to calculate W, the error of
our model as:

B max’Y — Y’

(11)
Ymax - Ymin

where during a HR-+GRNN (Fig. 6) and
SAOO + GRNN (Fig. 7) search. We can see that the
model error is very small and decreases as more data
are accumulated. Moreover, we found that the typical
OPC curve of this trim-loss problem is of the Bell-
shaped type (Fig. 8). According to Lau and Ho (1997),
when 100 samples are selected from a set of 1000
randomly, only two are expected to be among the top
50. However, with the help of a rough model

1 2 3 4 5
Batch

Fig. 7. The evolution of maximum model error W for
SAOO + GRNN.
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Fig. 8. Ordinal performance curve of the trim-loss problem.

(W=0.5) to rank the candidates, the number of
alignment in the top 50 is increased to nine. Since the
GRNN model is an adequate model (W <0.1), we can
expect an increase in alignment of at least one order of
magnitude. Indeed, the SAOO + GRNN method
requires only about 1/10 of the function calls required
by SA.

By doing so, we traded off number of tests (actual
function calls) with time required in modeling
construction and selection. Table 2 also compared
CPU time expended to solve this problem on an IBM
PC with Pentium 4 processor of 1.6 GHz. The time
required for SAOO + GRNN to find the global
optimum solution is less than 59s while the time
required for SA is more than 262 s. Such a trade-off is
obviously very worthwhile.

27
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Fig. 9. Effect of annealing rate.
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Figure 9 illustrates how the efficiency of the
SAOO + GRNN procedure is affected by the
annealing schedule. If the annealing rate is too slow,
o= 0.9, the procedure is no different from a blind pick
procedure. The convergence rate is relatively slow. If
the annealing rate is too fast, « = (0.3, too much trust is
put into the model, the solution procedure is easily
trapped in a local optimum. The procedure is more
like a horse race selection rule.

5. Conclusions

The optimization approach we proposed integrates
concepts in ordinal optimization with SA. In the
solution of large scale optimization problem by
heuristic based method, it is of paramount importance
to sample as many important candidates ( potentially
good solutions) as possible. Ordinal optimization
theory explained that during this candidate selection
process, the estimation and ranking of ‘‘potential
fitness’” does not have to be very accurate. We
suggested that this can be done by a purely empirical
“‘rough’ model, the generalized regression neural
network, which memorizes all existing data and
performs smoothing interpolation and extrapolation.
By performing SA search on this model, a good
enough set trial configurations are generated. Actual
objective function evaluations are required only for a
small fraction of the top-rank candidates in this set to
ensure that some good candidates are actually
sampled. Using this approach, we found that the
trim-loss problem arising from paper-cutting industry
can be solved very effectively.
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