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This work studies the effect of different models on the performance of multistep model predictive
control (MMPC) via simulation examples and bench- and pilot-scale experiments. The models
used in the study are two common types of artificial neural networks (ANNs), namely,
feedforward networks (FFNs) and external recurrent networks (ERNs). The steady-state offset
of MMPC using FFN models is observed throughout simulation cases and experiments in case
that prediction horizon is longer than the control horizon. This study further explains the FFN-
induced offset phenomena mathematically. In the experimental part of this work, we compare
the performances of MMPC using these two ANN models, conventional proportional-integral
controllers and linear model predictive control in the dual-temperature control problems, which
include a bench-scale ethanol and water distillation column and a pilot-scale i-butane and
n-butane distillation column.

1. Introduction

The rapid development of computing technology makes
it possible to pursue higher performance controllers.
Many model-based control schemes have been proposed
to incorporate a process model into a control system. In
his review paper, Hussain1 categorized them into three
classes: predictive control, inverse model-based control,
and adaptive control. Among them, predictive control
is the most common scheme. Dutta and Rhinehart2 also
gave a brief comment on various model-based control
schemes. The objective of this paper is to analyze the
controllability of incorporating an output feedback
model, such as feedforward neural networks (FFNs) and
external recurrent networks (ERNs), into a multistep
model predictive control (MMPC) system.

Linear model predictive control (LMPC) was almost
simultaneously developed in both academic and indus-
trial sectors.3-5 At the very beginning, many pioneering
investigators implemented horizon search instead of
inverse model in the LMPC algorithm. The main reason
is that the direct inverse of a “dynamic matrix” or a
“heuristic model” is either not available or not neces-
sary. In the case of horizon search, proper selection of
the “prediction horizon” as well as the “input suppres-
sion horizon” may increase the stability of a control
system.6 Thus, in the area of MPC, it is essential to
implement a prediction horizon into the future. We call
a horizon-based MPC a multistep MPC (MMPC).

MPC demands a dynamic process model that is
sufficiently accurate and can be high-speed computing,
though the feedback mechanism of MPC tolerates some

model mismatch to the plant. In the conventional
LMPC, process outputs in the prediction horizon are
expressed as a linear function of inputs and outputs,
both of which are in the past time. Also, coefficients in
the model function are determined from time series
response data of the target process. Such a linear model
is perfect for linear systems. It is a local approximation
for nonlinear systems. For a highly nonlinear system,
the region of acceptable approximation may become too
small to be practically controllable.

In fact, developing a valid model for process dynamics
is frequently the major work in the implementation of
an advanced control system. Modeling cost normally
accounts for over 75% of the expenditures in an ad-
vanced control project. Artificial neural networks (ANNs)
as a process model for control purposes conceive the
following superiority points as compared with other
conventional modeling methods:1,7,8

(1) Models derived from first principles are usually
difficult and/or costly to develop for processes that are
not well understood or very complex. Additionally, to
evaluate model parameters and to make models concise
enough for online execution, assumptions and sim-
plifications are inevitable and compromise model ac-
curacy.

(2) ANNs provide a general approach for extracting
process dynamics from input-output data only. Their
learning ability makes them versatile and friendly for
practical applications. In addition to their great power
for approximating complex functionality, the compact
form and high speed of information retrieval make
ANNs very suitable for online use.

After reviewing 100 relevant papers on the subject of
the application of ANNs to model-based control design,
Hussain1 concluded that real successful online applica-
tions are very rare.

Among all kinds of neural networks, FFNs and ERNs
are the most commonly used in process control. Though
MacMurray and Himmelblau7 pointed out that ERNs

* To whom correspondence should be addressed. E-mail:
ssjang@che.nthu.edu.tw.

† Present address: Department of Occupational Safety and
Hygiene, Chang Jung University, Tainan, Taiwan.

‡ Present address: Department of Chemical Engineering,
Nanya Institute of Technology, Taoyuan, Taiwan.

§ Present address: China Petroleum Corp., Chia-Yi, Taiwan.

5215Ind. Eng. Chem. Res. 2003, 42, 5215-5228

10.1021/ie020703k CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/06/2003



can forecast several steps ahead (prediction horizon) of
a process and are more suitable for control purposes,
we believe FFNs are not proper for MMPC, and this
issue has not been thoroughly addressed before. Actu-
ally, quite a number of applications of FFNs in the
framework of MPC have been reported.1 In our experi-
ments, MMPC using FFN models would result in offset
when there is a long-term disturbance. On the contrary,
MMPC using ERN models achieves zero offsets. In this
paper, we further explain the reason causing such a
difference between FFN and ERN models as incorpo-
rated into MMPC.

We first witnessed a nonzero offset existing in the
MMPC using FFNs in simulation studies. To ensure our
observations, we repeated the same control scheme in
a bench-scale ethanol-water distillation column and a
pilot-scale i-butane-n-butane distillation column. Both
experiments involved the dual-temperature control
problem. The major consideration in choosing two
distillation columns as the process studied for the
algorithm test is that such systems constitute a con-
strained, coupled, nonlinear, nonstationary process and
have disparate dynamics.2 They are complex enough to
reveal superiority of a sophisticated scheme such as
MMPC based upon ANN models. Another reason for the
choice is that several reports2,7,9,10 on the use of model-
based control strategies used distillation columns as
their application examples.

In the following context, the algorithm of MMPC is
stated in section 2. In section 3, the FFNs and ERNs
are introduced. In section 4, an analysis is presented to
account for the offset of MMPC with FFN models. In
section 5, simulation results are presented to verify the
analysis on the offset problem. Section 6 is for the
implementation of ANN-based MMPC and LMPC in a
bench-scale distillation column of ethanol and water.
The results demonstrate the advantage of nonlinear
ANN model-based MMPC over LMPC. Section 7 is
dedicated to the implementation of ANN-based MMPC
and traditional proportional-integral (PI) control in a
pilot-scale distillation column of i-butane and n-butane.
The experimental results reveal superiority of ANN-
based MMPC over PI control. The offset problem with
MMPC using FFNs observed in our experiment is also
included in sections 6 and 7. Conclusion remarks are
given in section 8.

2. Principles of MMPC

MPC has a general architecture as shown in Figure
1, where double line blocks are used to emphasize the
fact that the operators are nonlinear by following
Frank’s convention.11,12 In this figure, vectors u, y, and
d contain the manipulated variables (MVs), the con-
trolled variables (CVs), and the disturbances, respec-
tively, P is the process, M is a model of the process, and
C is the controller, which is an optimizer minimizing

the objective function below:

through searching for a set of increments for the MVs
and subjected to constraints such as

where M ) number of controlled variables, N ) number
of manipulated variables, P ) length of the prediction
horizon (in time steps), C ) length of the control horizon
(in time steps), uj ) manipulated variable j, ∆uj )
increment of manipulated variable j, defined as

∆uj,max ) upper bound for the increment of manipulated
variable j, uj,min ) lower bound of manipulated variable
j, uj,max ) upper bound of manipulated variable j, yi

m )
predicted value for controlled variable i, as evaluated
by model M, yi

s ) setpoint value for controlled variable
i, t ) step number of the current time, qj,c ) weight for
manipulated variable j in the cth increment in its
control horizon, hi,t ) difference between the measured
and predicted values of controlled variable i, namely

and yi ) measured value for controlled variable i.
It is clear from Figure 1 and the objective function in

eq 1 that MPC provides a feedforward action by includ-
ing the term ym, predicted effect of MVs u on the process
through process model M, and h, predicted the effect of
disturbance d on the process, as well as a feedback
mechanism by minimizing the difference between the
setpoint and the actual CVs. MPC possesses three
attractive properties, namely, dual stability, perfect
control, and zero offset under certain assumptions, as
analyzed by Economou et al.12 in the framework of the
internal model control (IMC).

In this study, the Levenberg-Marquardt algorithm,13

as recommended by Ramchandran and Rhinehart,10

is adopted in searching for ∆uj,t+c (j ) 1, 2, ..., N;
c ) 1, 2, ..., C), which gives a minimum of J as defined
in eq 1.

3. ANN Models

Figures 2 and 3 depict one FFN and one ERN,
respectively. The difference between FFNs and ERNs
is clear from these two figures. A FFN takes target
values from outside the network (measured CVs) as part
of its input and is therefore referred to as a series-

Figure 1. General architecture of MPC.
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parallel identification model7,14,15

where f is a nonlinear function of the network itself and
K and L are the orders of the model with respect to the
output and input. It should be noted that in prediction
of the output variables two or more steps ahead of the
current instant the predicted values of the FFN at
previous instants are used as the network’s input
because no measured values are available ahead of the
current instant. On the other hand, an ERN takes its
own output (predicted CVs) as its partial input and is
called a parallel identification model

In all the experimental and simulation studies of this
paper, neural networks are trained using the error back-
propagation algorithm. Because there are no general
rules for determining the structure (number of hidden
layers, number of nodes in each hidden layer, etc.) of
neural networks, structures of the FFN and ERN are
fixed in a trial-and-error way in the training stage. To

avoid overfitting, the model-validation technique used
by Psichogios and Ungar16 is adopted; namely, the
performance of networks in predicting the testing data
is checked after each epoch of learning, and the learning
process is terminated if the prediction error on the
testing data is increased by further training.

4. Offset of MMPC Using Series-Parallel Models

Ljung14 has presented a thorough discussion of the
advantages and disadvantages of parallel and series-
parallel modeling approaches, and MacMurray and
Himmelblau7 have said that the parallel model is
preferable in MMPC because model predictions more
than one step ahead of the current instant may be
required and feedback of the model output is therefore
necessary. However, the inherent improperness of series-
parallel models for MMPC is not fully recognized, and
they are still adopted occasionally. Here, we present an
analysis to account for the offset problem with MMPC
based on series-parallel models.

For simplicity, we take a single-input single-output
(SISO) system for analysis, and subscripts denoting
variable indexes are also omitted. Without considering
the penalty on the MV, MMPC in section 2 for a SISO
process is reduced to solving the following system of
equations in the sense of least-squares errors:

If our goal is to bring the system to a certain setpoint
value ys, namely,

and let E ) ys - ht, then the equation system of eq 11
can be rewritten as

Therefore, the necessary and sufficient condition of zero
offset is that there exist a set of values, {ut+1, ut+2, ...,
ut+C}, for the MV that fulfill the system of P equations
as shown in eq 13 if the system is closed-loop stable.

For a parallel model shown in eq 10, its recurrent
nature will eventually make all the P equations in eq
13 be fulfilled and ensure zero offset, although model
mismatch may exist. The reason is that yt+1

m , yt+2
m , ...,

and yt+P
m will eventually and automatically become

identical through recurrence (or iteration) if the system
is stable. That means that all of the P equations of eq
13 are reduced to the single one:

by approaching to the trivial solution u∞ ) ut+1 ) ... )
ut+C.

On the other hand, equations of eq 13 are satisfied
strongly conditionally if a series-parallel model is
employed because yt+1

m , yt+2
m , ..., and yt+P

m are never the
same with each other, unless the model is perfect. This
point is clear from the implementation of eq 13 for an

Figure 2. Structure of a FFN (there may be more than one hidden
layer).

Figure 3. Structure of an ERN (there may be more than one
hidden layer).

yt ) f(yt-1,...,yt-K;ut,...,ut-L+1) (9)

yt ) f(yt-1
m ,...,yt-K

m ;ut,...,ut-L+1) (10)

{yt+1
s - (yt+1

m + ht) ) 0

yt+2
s - (yt+2

m + ht) ) 0

...

yt+P
s - (yt+P

m + ht) ) 0

(11)

yt+1
s ) ... ) yt+P ) ys (12)

yt+1
m ) yt+2

m ) ... ) yt+P
m ) E (13)

f(y∞
m,...,y∞

m;u∞,...,u∞) ) E (14)
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example with prediction horizon P ) 5, control horizon
C ) 2, and the model’s order with respect to the CVs
and MVs being K ) 3 and L ) 3.

For this example, we are to solve three unknown {ut,
ut+1, ut+2} from five different equations, and the solution
can only be in the sense of least-squares errors, equa-
tions of eq 13 cannot be satisfied strictly, and offset will
surely happen, unless a perfect model is used. Because
model mismatch is usually inevitable, offset can be
generally anticipated for MMPC using series-parallel
models, and such a MMPC will perform poorly in

disturbance rejection. From the viewpoint of the least-
squares error solution of eq 13, we can also expect larger
offset for a greater difference between prediction and
control horizons, P - C, and for greater penalty on MVs.

5. Two Simulation Examples

5.1. A Simple Linear System. To show the differ-
ence between parallel and series-parallel models as
they are incorporated in MMPC, we first examine a
simple linear process:

or in the discrete form

Figure 4. Performance of the linear system under MMPC (C ) 1 and P ) 1) with different MV penalties (q) and model mismatches (ε),
subject to setpoint changes and disturbances.

{yt+1
m ) f(yt,yt-1,yt-2;ut+1,ut,ut-1)

yt+2
m ) f(yt+1

m ,yt,yt-1;ut+2,ut+1,ut)

yt+3
m ) f(yt+2

m ,yt+1
m ,yt;ut+2,ut+2,ut+1)

yt+4
m ) f(yt+3

m ,yt+2
m ,yt+1

m ;ut+2,ut+2,ut+2)

yt+5
m ) f(yt+4

m ,yt+3
m ,yt+2

m ;ut+2,ut+2,ut+2)

(15)

Gu ) 2 - 1.7z-1

1 - 0.5z-1
(16)

Gd ) 1 (17)

yt ) 0.5yt-1 + 2ut - 1.7ut-1 + d (18)
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with initial conditions

The series-parallel and parallel models used are

where ε is used to modulate the model mismatch. If ε )
0, eqs 20 and 21 are perfect models. Obviously, the
orders of both parallel and series-parallel models are
the same, namely, K ) 1 and L ) 2 with respect to the
CVs and MVs, respectively.

Figures 4-6 show the behavior of this linear system
under MMPC with different prediction and control
horizons and using the two models of different mismatch

degrees. To test the real nature of MMPC with different
models and different parameter settings, relatively loose
constraints are used here through inequalities (4) and
(5) with ∆umax ) 1, umin ) 0, and umax ) 10. In all of the
parallel runs, the setpoint is changed from 0 to 1 at the
20th step and disturbance d ) -0.4 is introduced at the
120th step. Comparison between the test results in
these figures justifies our conclusion that MMPC using
a series-parallel model, eq 20 here, presents offset
unless special conditions are fulfilled (see the discussion
below), whereas MMPC using a parallel model, eq 21
here, is always free of offset.

From Figure 4, it is interesting to note that MMPC
of single-step-ahead prediction and control horizons,
whether using the series-parallel model or the parallel
model, with penalty on MV increments or not, is free of
offset despite model/plant mismatch. MMPC of equal
prediction and control horizons and using the series-
parallel model does not present offset if the model is
perfect or no penalty on MV is used, which is clear from

Figure 5. Performance of the linear system under MMPC (C ) 2 and P ) 2) with different MV penalties (q) and model mismatches (ε),
subject to setpoint changes and disturbances.

{yt ) yt-1 ) 0
ut ) ut-1 ) 0
d ) 0

(19)

yt
m ) (1 + ε)0.5yt-1 + (1 + ε)2.0ut - 1.7ut-1 (20)

yt
m ) (1 + ε)0.5yt-1

m + (1 + ε)2.0ut - 1.7ut-1 (21)
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Figure 5. As for the tests shown in Figure 6, where the
prediction horizon is greater than the control horizon,
MMPC based on the series-parallel model can be offset
free only if the model is perfect. Penalties on MV will
increase the amount of offset.

5.2. Continuously Stirred Tank Reactor (CSTR).
To verify our previous analysis on the offset of MMPC
with a FFN model, a kind of series-parallel model, we
have performed a simulation of the CSTR once worked
with by several researchers12,16 and the author.17 In this
process a first-order nonisothermal reversible reaction
A T R occurs. The CV is the product concentration R0,
and the MV is the temperature of the inlet stream Ti.
This process is described by three first-order non-
linear differential equations, and its setup details are
referred to elsewhere.12 With this process, Psichogios
and Ungar16 had their study on IMC and MMPC.

The same neural network as described by Psichogios
and Ungar16 is used in this study, and it has one input
layer, two hidden layers, and one output layer. The
input layer has six nodes, half of the nodes are for MV

(Ti) at instants t, t - 1, and t - 2 and the other half for
the CV (R0) at instants t - 1, t - 2, and t - 3, with t
being the current time instant. Each hidden layer has
eight nodes, and a tangent sigmoid transfer function is
used in each node. The output layer has one node with
a pure linear transfer function, and the output is the
CV at instant t. Functionally, the network can be
expressed as

For easy comparison, we follow Psichogios and Ungar16

strictly in building datasets for training and testing and
in training and testing procedures.

In implemention of MMPC, the trained neural net-
works of eq 22 are used in two different ways, namely,
as a series-parallel model and as a parallel model, and
the same neural network is therefore distinguished
according to running modes and is called the FFNand
ERN models. The same constraints as those stated by
Psichogios and Ungar16 are used through inequalities

Figure 6. Performance of the linear system under MMPC (C ) 2 and P ) 5) with different MV penalties (q) and model mismatches (ε),
subject to setpoint changes and disturbances.

R0,t
m ) f(R0,t-1,R0,t-2,R0,t-3;Tt,Tt-1,Tt-2) (22)
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(4) and (5) with ∆umax ) 1, umin ) 420, and umax ) 435.
The CSTR under MMPC using FFN and ERN models
are subjected to a 1% decrease in the setpoint value in
test I and to a disturbance (+2% increase in the inlet
feed concentration of reagent A) in tests II-IV, and the
test results are shown in Figure 7. For a setpoint change
in test I, both FFN and ERN model the target process
almost perfectly, and MMPC with both models is

virtually offset free, as anticipated. In test II, because
only a one-step-ahead prediction horizon is used, MMPC
using both FFN and ERN models achieves zero offset
in the face of disturbance or model mismatch, just as
argued in section 4. However, MMPC using the FFN
model presents offset in tests III and IV, a clear contrast
to its ERN counterpart, because disturbance means
model mismatch and multistep prediction is employed.

Figure 7. Performance of the CSTR under MMPC using FFN and ERN models, subjected to setpoint changes (test I) and disturbances
(tests II-IV).
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Additionally, the objective function (J) of eq 1, for test
IV, is drawn in Figure 8, which says that offset presents
wherever J is not small enough.

By the way, we also repeated the test of Psichogios
and Ungar, where -2% disturbance in the inlet feed
concentration of reagent A was exerted for 20 min, and
got the same result as shown in their paper.16 For such
a “big” negative disturbance, MMPC with both FFN and
ERN drove the system to its physical limit and exhibited
offset during the disturbance. The system had an offset-
free recovery to its setpoint after the disturbance was
removed, as expected, because the ERN and FFN
models were virtually perfect in that case.

6. Experiment on an Ethanol and Water
Distillation Column

This test is carried out on a bench-scale distillation
column for ethanol and water mixture, which is depicted
in Figure 9 together with the PI controllers. Table 1 lists
the structural and operational parameters of the col-
umn. It should be noted that the isotropic mixture (78.15
°C, 0.8943 mole fraction of ethanol, at 1 atm) is likely
to form at the top of the column.

From measured step response curves, the four classic
transfer functions for this column are derived as

where u1 ) reflux valve opening (%), u2 ) reboiler
heating steam pressure (kPa), y1 ) top temperature (°C),
and y2 ) bottom temperature (°C).

The relative gain array (RGA) of Bristol18 is calculated
as

Figure 8. Residual of the objective function J of eq 1 for test IV
with the CSTR under MMPC using FFN and ERN models.

Figure 9. Configuration of the ethanol and water distillation
column.

Table 1. Parameters of the Ethanol-Water Column

pressure 1 atm
inner diameter 0.1 m
packing height 1.1 m
stripping section height 0.9 m
packing porosity 0.968
feed rate 400 mL/min
feed composition 0.30 mole fraction of ethanol
reboiler holdup 0.0257 m3

bottom holdup 0.0263 m3

reflux drum holdup 0.0135 m3

Table 2. Optimum Parameters of PI Controllers for the
Ethanol-Water Column

Top Temperature
gain -42 integral time, s 70

Bottom Temperature
gain 13.5 inner loop gain 1.2
integral time, s 192.9

Table 3. Structural Parameters of the FFNs and ERNs

no. of hidden layers 1
no. of hidden nodes 3
activation function for hidden nodes hyperbolic tangent
no. of output nodes 1
transfer function for the output node linear
entries in input data set 1 u1(t-1), ..., u1(t-18)
entries in input data set 2 u2(t-1), ..., u2(t-18)
entries in input data set 3 y(t), ..., y(t-6)

Figure 10. Testing data: top and bottom temperatures of the
ethanol-water column, where solid line ) measured and dotted
line ) predicted by the ERN.

G11 )
y1(s)

u1(s)
) -0.0194e-30s

68.75s + 1
(23)

G12 )
y1(s)

u2(s)
) 0.004e-166.25s

13.75s + 1
(24)

G21 )
y2(s)

u1(s)
) -0.2607e-96.25s

518.75s + 1
(25)

G22 )
y2(s)

u2(s)
) 0.1427e-93.75s

410s + 1
(26)

[1.6043 -0.6043
-0.6043 1.6043 ] (27)
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Optimal parameters for the two PI controllers are
determined from eqs 22-26 by the BLT approach19 and
are listed in Table 2.

The test includes (1) process identification with
ANNs, (2) PI control, (3) comparison of the performance
of MMPC using FFN and ERN models, and (4) com-
parison of the performance of the ERN-based MMPC
and LMPC. In implementation of the FFN- and ERN-
based MMPC, no penalty on the MVs (u1 and u2) is used,
namely, all q’s in eq 1 are zero. The control horizon (C)
for both MVs is 1, whereas the prediction horizon (P) is
examined at different values in the test. Constraints on
minimization include 35% e u1 e 95%, |∆u1| e 6%, 55
kPa e u2 e 145 kPa, and |u2| e 12 kPa. LMPC used
here is the same as the direct matrix control (DMC),
and its algorithm is referred to in a standard textbook
of Marlin.20 We use term LMPC instead of DMC here
because DMC is a trademark and has special technical
meanings.

6.1. Training of ANN Models. The training and
testing datasets are obtained by recording the CVs, with
the MVs varying randomly. For neural network models
to better distinguish the effects of MVs on CVs, MVs
are changed in three combination patterns, namely,
random changes of both u1 and u2, and random changes
of either u1 or u2, with one of them being constant. The
structural parameters determined for the final two
FFNs and two ERNs are listed in Table 3. Figure 10
presents the testing results from the two best-trained
ERNs, and it is clear that the predicted curves by the
two ERNs deviate observably from the measured ones.
The testing results with the two FFNs are not shown
here because the FFNs are much more accurate and the
predicted curves almost coincide with the measured
ones.

6.2. PI Control. Figure 11 shows the performance
of the PI controllers, which are a record of the transient
process of the CVs in response to step changes in the
setpoints of both the top and the bottom temperatures.
It was witnessed that, although the PI controllers were
excellent when only one loop was closed (the experi-
mental results of one closed loop are referred to else-

Figure 11. Transient process of the ethanol-water column under PI control, in response to step changes in the setpoints of the top and
bottom temperatures, where solid line ) measured and dashed line ) setpoint.

Figure 12. Top and bottom temperatures of the ethanol-water
column subjected to two setpoint changes, under the MMPC (P )
20 and C ) 1) using ERN models, where solid line ) measured
and dashed line ) setpoint.

Figure 13. Top and bottom temperatures of the ethanol-water
column subjected to two setpoint changes, under the MMPC (P )
20 and C ) 1) using FFN models, where solid line ) measured
and dashed line ) setpoint.

Figure 14. Top and bottom temperatures of the ethanol-water
column subjected to a feed rate decrease from 311 to 290 mL/min
at the 200th sample instant, under the MMPC (C ) 1 and P ) 20,
40, and 10) using ERN models, where solid line ) measured and
dashed line ) setpoint.
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where21), they were poor when both loops were closed
because there was interaction between the top and
bottom temperature loops, as is clearly indicated by the
RGA in eq 27.

6.3. MMPC Using FFNs and ERNs. MMPC using
the above FFNs and ERNs is used to control the ethanol
and water column. Figure 12 depicts the transient
process of the column controlled by MMPC using two
ERNs as the models and subjected to setpoint changes.
Figure 13 is the FFN counterpart of Figure 12. From
the comparison of Figures 12 and 13, it is clear that
MMPC using FFN models presents offset, a clear
contrast to the offset-free behavior of MMPC using
ERNs. The offset is not very gross in these setpoint
changes because the FFNs are trained around the
operating point and therefore have small mismatch.
Figures 14 and 15 show the disturbance rejection
performance of MMPC using both ERN and FFN
models. Neural network models become more inaccurate
with the presence of disturbance, and FFN-based MMPC
presents a serious offset (Figure 15), whereas MMPC
based on ERNs rejects the disturbance completely and
has no offset (Figure 14). Just as noted in the first
example of simulation in section 5, the offset with the
FFN-based MMPC, as is clearly shown in Figure 15,
becomes larger for a bigger prediction horizon (P), which
is logical from our analysis in section 4.

6.4. Performance of ERN-Based MMPC versus
LMPC. Figures 16-19 compare MMPC using ERN
models and LMPC as they are used in the ethanol-
water column subjected to setpoint changes. It is clear
from the comparison between Figures 16 and 17 and
between Figures 18 and 19 that the ERN-based MMPC
is much superior to the LMPC in tracking setpoint

Figure 15. Top and bottom temperatures of the ethanol-water
column subjected to a feed rate decrease from 311 to 290 mL/min
at the 200th sample instant, under the MMPC (C ) 1 and P ) 20,
40, and 10) using FFN models, where solid line ) measured and
dashed line ) setpoint.

Figure 16. Top and bottom temperatures of the ethanol-water column subjected to a setpoint change in the top temperature, under the
MMPC (P ) 12 and C ) 1) using ERN models, where solid line ) measured and dashed line ) setpoint.

Figure 17. Top and bottom temperatures of the ethanol-water column subjected to a setpoint change in the top temperature, under the
LMPC (P ) 12 and C ) 1), where solid line ) measured and dashed line ) setpoint.
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changes for this ethanol-water distillation column
where strong nonlinearity is present because the opera-
tion is in the neighborhood of an isotropic mixture at
the top of the column.

7. Experiment on an i-Butane and n-Butane
Distillation Column

This test is performed on a pilot-scale column for
i-butane and n-butane, as sketched in Figure 20. This
pilot-scale column is packed with wire mesh packing,
and its parameters are shown in Table 4. The reboiler
is heated by electricity. Four metering pumps are
included to control various flow rates. J-type thermo-
couples are adopted in temperature measurement. The
separation capability of the column was about 18
theoretical plates. Temperatures at approximate loca-

Figure 18. Top and bottom temperatures of the ethanol-water column subjected to a setpoint change in the bottom temperature, under
the MMPC (P ) 12 and C ) 1) using ERN models, where solid line ) measured and dashed line ) setpoint.

Figure 19. Top and bottom temperatures of the ethanol-water column subjected to a setpoint change in the bottom temperature, under
the LMPC (P ) 12 and C ) 1), where solid line ) measured and dashed line ) setpoint.

Figure 20. Configuration of the i-butane and n-butane distillation
column.

Table 4. Parameters of the i-Butane and n-Butane
Column

inner diameter 5 cm
packing height 180 cm
reflux drum

inner diameter 5 cm
height 20 cm

feed composition
i-butane 75 wt %
n-butane 25 wt %
feed flow rate 60 mL/min

Table 5. Optimized Parameters of PI Controllers for the
i-Butane and n-Butane Column

Top Temperature at the 3rd Plate
gain, °C/% reflux pump speed -12
integral time, s 120

Bottom Temperature at 12th Plate
gain, °C/% reboiler power 2.5
integral time, s 250
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tions of the 3rd and the 12th theoretical plates, referred
to as top and bottom temperatures, respectively, are the
CVs. The control scheme with PI controllers is also
shown in Figure 20 for this dual-temperature control
problem.

For this pilot-scale column, the four classic transfer
functions describing local behavior are derived from step
response curves:

where u1 ) reflux pump’s speed, u2 ) reboiler heating
power, y1 ) temperature at the height of the 3rd
theoretical plate (top temperature), and y2 ) tempera-
ture at the height of the 12th theoretical plate (bottom
temperature).

The RGA is evaluated as

The BLT approach20 is used to determine the opti-
mum parameters for the two PI controllers from eqs 28-
31, and the parameters are listed in Table 5.

The content of the test on this column is in three
parts: (1) process identification with FFNs and ERNs,
(2) control with MMPC using FFN models (the FFN-
based MMPC), and (3) comparison of the MMPC using
ERN models (the ERN-based MMPC) with the optimum
PI controllers. In implemention of the FFN- and ERN-
based MMPC, no penalty is used on the MVs, the control
and prediction horizons are C ) 1 and P ) 15, and the
following two constraints are included: 6% e u1 e 46%
and 23% e u2 e 29% in the minimization.

7.1. Training of the FFN and ERN Models. Fol-
lowing the same procedure as that in subsection 6.1,
training and testing datasets are established and two
FFNs and two ERNs are trained to model the top and
bottom temperatures, respectively. The structural pa-
rameters of the four networks are the same as those
listed in Table 3, and Figure 21 compares the values
predicted by the trained ERNs with the measured ones
in the testing dataset for the two CVs, top and bottom
temperatures. As in the ethanol-water column of the
last section, the FFNs are much more accurate, and the
predicted curves coincide with the measured ones.

Figure 21. Testing data: top and bottom temperatures of the i-butane and n-butane column, where solid line ) measured and dotted
line ) predicted by the ERN.

Figure 22. Transient process of the top and bottom temperatures of the i-butane and n-butane distillation column under the FFN-based
MMPC, in response to step changes in the setpoints of the two CVs, where solid line ) measured and dashed line ) setpoint.

G11 )
y1(s)

u1(s)
) -0.14e-120s

1200s + 1
(28)

G12 )
y1(s)

u2(s)
) 0.6e-220s

840s + 1
(29)

G21 )
y2(s)

u1(s)
) -0.04e-80s

700s + 1
(30)

G22 )
y2(s)

u2(s)
) 0.4e-70s

400s + 1
(31)

[1.75 -0.75
-0.75 1.75 ] (32)

5226 Ind. Eng. Chem. Res., Vol. 42, No. 21, 2003



7.2. Performance of the FFN-Based MMPC. The
FFN-based MMPC is tested on the i-butane and n-
butane column by introducing a series of step changes
in the setpoints of two CVs, namely, the top and bottom
temperatures. From the result shown in Figure 22, it
is clear that offsets are present with both CVs. With
the analysis on the offset of MMPC using series-
parallel models (here, the FFN models) in section 4, we
are not surprised at such offsets because a long-term
disturbance, afternoon sunshine on the reflux drum,
existed on the experimental days.

7.3. Performance of the ERN-Based MMPC ver-
sus PI Control. The performance of the ERN-based
MMPC is examined in this test. For comparison, PI
controllers with parameters in Table 5, and as imple-
mented in Figure 20, are also used to control the column
in a parallel run. Figures 23 and 24 are the result of
control with the ERN-based MMPC and the PI control-
lers. The transient process of the CVs in response to
step changes in the setpoints of the top and bottom
temperatures shows clear superiority of the ERN-based
MMPC over conventional PI control in this dual-
temperature control problem where interaction exists,
as is indicated by the RGA in eq 32.

8. Conclusion

Through the analysis, simulation examples, and
experiments on a bench-scale ethanol-water distillation

column and on a pilot-scale column of i-butane and
n-butane, we draw the following conclusions:

(1) Though FFNs perform better (or even much better)
than ERNs in fitting training and testing data, which
are measured at limited conditions, the presence of CVs
in the input of FFNs, and all kinds of series-parallel
models, makes such networks improper for MMPC.
Because model mismatch is inevitable (especially when
an unmeasured long-term disturbance is present), MMPC
using FFNs produces offset. This defect of FFNs is
analyzed and is demonstrated with simulation examples
and with experimental data in this paper.

(2) The superiority of MMPC using nonlinear ANN
models over conventional PI control and over LMPC is
experimentally testified for the dual-temperature con-
trol problem in the two distillation columns. The ad-
vantage of MMPC comes from its capability of decou-
pling interactions between different control loops and
from ANNs’ capability of capturing the nonlinear dy-
namics of the processes.

(3) The success of ERNs as models in MMPC strongly
supports the viewpoint of Rhinehart and co-workers,2,10

who said that “it is gain prediction, more-so than state
prediction, that makes model-based control effective.”
This conclusion is evident from the training results in
Figures 10 and 21, where ERNs do have a correct
correlation of the process gain, although errors exist in
the predicted state.

Figure 23. Top and bottom temperatures of the i-butane and n-butane column under ERN-based MMPC, in response to step changes
in the setpoints of the CVs, where solid line ) measured and dashed line ) setpoint.

Figure 24. Top and bottom temperatures of the i-butane and n-butane column under PI control, in response to step changes in the
setpoints of the CVs, where solid line ) measured and dashed line ) setpoint.

Ind. Eng. Chem. Res., Vol. 42, No. 21, 2003 5227



Acknowledgment

The authors are thankful for the financial support for
this work from National Science Council, Republic of
China, through Grant NSC90-2622-E007-003.

Literature Cited

(1) Hussain, M. A. Review of the application of neural networks
in chemical process control: simulation and online implementa-
tion. Artif. Intell. Eng. 1999, 13, 55-68.

(2) Dutta, P.; Rhinehart, R. R. Application of neural network
control to distillation and an experimental comparison with other
advanced controllers. ISA Trans. 1999, 38, 251-278.

(3) Cutler, C. R.; Ramaker, R. L. Dynamic matrix control: A
computer control algorithm. AIChE 86th National Meeting, Hous-
ton, TX, 1979.

(4) Richalet, J.; Rault, A.; Rapon, J. Model Predictive Heuristic
Control: Application to industrial process. Automatica 1978, 14,
413-428.

(5) Brosilow, C. B. The structure and design of Smith predictor
from the viewpoint of inferential control. Proceedings of the Joint
Automatic Control Conference, Denver, CO, June 17, 1979.

(6) Garcia, C. E.; Morari, M. Internal model controls1. A
unifying review and some new results. Ind. Eng. Chem. Process
Des. Dev. 1982, 21, 308-323.

(7) MacMurray, J. C.; Himmelblau, D. M. Modeling and control
of a packed distillation column using artificial neural networks.
Comput. Chem. Eng. 1995, 19, 1077-1088.

(8) Bhat, N.; McAvoy, T. Use of neural nets for dynamic
modeling and control of chemical process. Comput. Chem. Eng.
1990, 14, 573-583.

(9) Shaw, A. M.; Doyle, F. J., III; Schwaber, J. S. A dynamic
neural network approach to nonlinear process modeling. Comput.
Chem. Eng. 1997, 21, 371-385.

(10) Ramchandran, S.; Rhinehart, R. R. A very simple structure
for neural network control of distillation. J. Process Control 1995,
5, 115-128.

(11) Frank, P. M. Entwurf von Regelhreisen mit Vorgeschire-
benem Berhalten; G. Braun Verlag: Karlsruhe, Germany, 1974.

(12) Economou, C. G.; Morari, M.; Palsson, B. O. Internal model
control. 5. Extension to nonlinear systems. Ind. Eng. Chem. Process
Des. Dev. 1986, 25, 403-411.

(13) Marquardt, D. W. An algorithm for least-squares estima-
tion of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11,
431-441.

(14) Ljung, L. System Identification: Theory for the User;
Prentice-Hall: Eaglewood Cliffs, NJ, 1987.

(15) Narendra, K. S.; Parthasarathy, K. Identification and
control of dynamical systems using neural networks. IEEE Trans.
Neural Network 1990, 1, 4-27.

(16) Psichogios, D. C.; Ungar, L. H. Direct and indirect model
based control using artificial neural networks. Ind. Eng. Chem.
Res. 1991, 30, 2564-2573.

(17) Jang, S. S.; Joseph, B.; Muaki, H. Control of constrained
multivariable nonlinear process using a two-phase approach. Ind.
Eng. Chem. Res. 1987, 26, 2106-2114.

(18) Bristol, E. On a new measure of interaction for multi-
variable process control. IEEE Trans. Autom. Control 1966, AC-
11, 133-134.

(19) Luyben, W. L. Process Modeling, Simulation, and Control
for Chemical Engineers, 2nd ed.; International Editions; McGraw-
Hill: London, 1990.

(20) Marlin, T. E. Process Control: Designing Processes and
Control Systems for Dynamic Performance; International Editions;
McGraw-Hill, London, 1995.

(21) Tsai, W.-Y. Artificial Neural Network Model Predictive
Control on Packed Distillation Columns. Master’s Thesis, National
Tsing-Hua University, Hsin-Chu, Taiwan, 2001.

Received for review September 11, 2002
Revised manuscript received July 2, 2003

Accepted August 5, 2003

IE020703K

5228 Ind. Eng. Chem. Res., Vol. 42, No. 21, 2003


