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Combinatorial techniques have become more and more important in many areas of chemistry and
chemical engineering research. It was suggested that simulated annealing can be used to improve the
efficiency of sampling in combinatorial methods. However, without priori model estimates of fitness
function, true importance sampling cannot be performed. In this case, the efficiency of annealing is only
as good as random search. We suggested that a simple prediction model using currently available data
can be constructed using a generalized regression neural network. An index of our uncertainty about a
point in the search space can also be established using information entropy. An information free energy
combined the two indices to direct the search so that importance sampling is performed. Two benchmark
problems were used to model the optimization problem involved in combinatorial synthesis and library
design. We showed that when importance sampling is performed, the combinatorial technique became
much more effective. The improvement in efficiency over undirected methods is especially significant
when the size of the problem becomes very large.

Introduction

In recent years, combinatorial synthesis become
an important optimization technique in product and
process development (Davis, 1999), e.g. material syn-
thesis (Xiang et al., 1995; Szostak, 1997; Wilson and
Czarnik, 1997; Danielson et al., 1998; Klein et al.,
1998; van Dover et al., 1998; Cong et al. 1999;
Engstrom and Weinberg, 2000), design of catalysts
(Cole et al., 1996; Jandeleit et al., 1998; Schlögl, 1998;
Senkan, 1998), selection of solvent (Pretel et al., 1994),
drug design (Gordon et al., 1996; Gordon, 1998;
Linusson et al., 2000), improvement of enzymes ac-
tivity (You and Arnold 1996; Bornscheuer, 1998). Com-
binatorial techniques screen a large quantity of differ-
ent combinations of inputs to find the condition that
produces the best merit function.

There are two focuses in combinatorial synthesis
research: (1) how to create a large throughput of ex-
periments (e.g. Hanak, 1970), (2) how to develop a
protocol for designing experiments, so that the input
state-space can be sampled effectively (e.g. Gordon,
1998; Linusson et al., 2000; Voigt et al., 2001). In prac-
tice, the two problems may not be separable since the
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method of experiments may dictate under what condi-
tions a batch of experiments may be done. The selec-
tion of experiments is then highly correlated instead
of random. However, in this work, we are concerned
only with how previous information obtained can be
used to improve sampling efficiency.

Sampling policy in combinatorial synthesis is just
another form of experimental design. In the past, we
have proposed experimental design methods based on
information theory (Lin et al., 1995; Chen et al., 1998)
for process optimization and recipe selection. The phi-
losophy is as follows. Given a set of data, an empirical
model can be trained. This model can be used to direct
the search and suggest experiments at points that have
potentially high fitness function (low information en-
ergy). However, such a model is untrustworthy when
data are sparse compared to the entire search space
(high information entropy). We need to explore areas
that have not yet been investigated. A temperature-
annealing schedule can be used to shift from an infor-
mation-entropy-based search to information-energy-
based search. These methods are not efficient for com-
binatorial synthesis because the modeling techniques
used are not equipped to handle problems of extremely
large dimensional. The neural network used require
extensive training. In this work, we shall propose an
information-based importance sampling policy that
can be used for combinatorial synthesis. The efficiency
of this method is tested using the RPV and the N–K
models.
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1. Theory

1.1 Fitness landscape
1.1.1 N–K model         There are two types of opti-
mization problems in combinatorial chemistry: high-
dimensional “structural” search of combinations of in-
teger variables and high dimensional “spatial” search
of continuous variables.

In structural search problems, components in a
library are combined to form a particular structure.
Experiments or calculations are then carried out to see
if the synthesized structure has the desired property. A
benchmark problem of such optimization is known as
the N–K problem (Kauffman and Levin, 1987). The
N–K model captures the basic physics of many phe-
nomena such as genomics, protein evolution, etc.
(Kauffman, 1993; Perelson and Macken, 1995). Vari-
ous modified forms of the N–K model have also been
proposed (Bogarad and Deem, 1999). The simplest
N–K model can be described as follows. Consider an
N-dimensional array of integer variables (a

1
, a

2
, ···, a

N
).

It represents the state of a sequence. Each entry of the
sequence a

j
 represents a component from the library.

For example, in gene sequencing, each entry a
j
 can be

one of the four nucleotides C, T, G, A. In protein fold-
ing problems, each entry a

j
 can be a particular form of

amino acids. In drug design, each entry a
j
 can be one

of the functional groups that are used to form a ligand.
In the N–K problem, a

j
 is a binary variable that takes

values of 1 or 0. The merit function E(a
1
, a

2
, …, a

N
) is

given by:
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) is the contribution to the merit func-

tion by the j-th entry. Note that the contribution de-
pends not only on the state of occupancy of the j-th
variable, but also on how the next K – 1 variables are
occupied. Such a formulation is an analog of many
physical situations. For example, a particular pheno-
type is found only if a particular sequence of
nucleotides (a genotype) is found. In a protein folding
problem, the state of a particular amino-acid in a pro-
tein depends on its neighboring amino acids. A func-
tional group manifests its chemical nature only if the
neighboring groups provide a suitable molecular envi-
ronment. In the N–K problem σ

j
 (a

j
, a

j+1
, ···, a

j+k–1
)  is

given by a “lookup” table of problem-defined values.
Two examples of lookup tables for (N = 4, K = 2) and
(N = 4, K = 3) are given in Fig. 1. Given the lookup
tables, the merit function of all 16 different states can
be calculated. For example, in Fig. 1, given the lookup
table (N = 4, K = 2), the point (0, 0, 1, 0) will have a

merit function

E1000
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For N = 4, the changes of the merit function can be
shown as two connecting Boolean cubes. Each vertex
is connected to 4 different vertices, each of which dif-
fers from the center point by one variable. For ex-
ample, the point (1, 0, 0, 0) is connected to (0, 0, 0, 0),

Fig. 1 Local and global extremas for NK models
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(1, 1, 0, 0), (1, 0, 1, 0) and (1, 0, 0, 1). The connections
can be shown as edges of the connecting cubes. The
arrows show the direction of decrease in the merit func-
tion. The lookup table (N = 4, K = 2) generates two
local minima, while the other with N = 4, K = 3 gener-
ates three. Kauffman (1993) showed that as N and K
increase, the number of local minima increases, and
the difference between global optimal and average
value of the merit function decreases. For more details
of the N–K model and its relevance to various physi-
cal situations, readers can refer to the book by Kaufman
(Kauffman, 1993). The role of the N–K problem for
library design optimization is analogous to that of the
traveling salesman problem for network routing.
1.1.2 Random phase volume model         In many com-
binatorial synthesis problems, experimental variables
include the compositions of the material and process-
ing conditions. The input state-space consists of both
discrete and continuous variables and is typically of
very high dimensions. The merit function is usually
one or a set of specific properties of the material such
as superconductivity, luminescence, catalytic activity,
tensile strength, etc. Such properties will depend on
the particular phase of the product material. Since the
change of physical property of the material is discon-
tinuous across a phase boundary, the objective func-
tion encountered in combinatorial synthesis optimiza-
tion is only piecewise continuous.

Falcioni and Deem (2000) proposed a “random
phase volume” (RPV) model to simulate the merit func-
tion encountered in combinatorial synthesis. Essen-
tially RPV is a relation between the merit function E
and a set of compositional variables   

r
x  and non-com-

position variables   
r
z . Composition variables are ex-

pressed as mole fractions. Therefore for a C compo-
nent system, there are C – 1 independent composition
variables. The entire composition space is divided into
α = 1, ···, M different phases by defining M phase center
points   

r
xα

0 . Each point in the composition space be-
longs to the phase of the nearest phase center point.
Non-composition variables may be processing condi-
tions such as temperature, pressure, pH, time of reac-
tion, thickness of film, etc. They may be discrete or
continuous and normalized in the range of [–1, 1] in
the RPV model. Similarly the non-composition space
is divided into γ = 1, ···, N different phases by defining
N phase center points   

r
zα
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The merit function Eαγ in this phase is represented by a

Q
x
-th order polynomial in composition variable and a

Q
z
-th order polynomial in non-composition variable:
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are parameters generated by Gaussian random number
with zero mean and unit variance. The scale factors ξ

x

and ξ
z
 are chosen so that each term in the multinomial

expansion contributes roughly the same amount. The
σ

x
 and σ

z
 are chosen so that the multinomial expansion

terms contribute about 40% of Eαγ. The symmetric fac-
tor is given by:
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where l is the number of distinct integer values in the
set of {i

1
, ···, i

k
}, and o

i
 is the number of times that

distinct value i is repeated in the set. Note that 1 ≤ l ≤
k and ∑ = =i

l
i ko1 . Figure 2 is a typical merit function

landscape of an RPV model with C = 3, D = 0, M = 15
and Q

x
 = 2. The piecewise continuous and nonlinear

nature is evident. The complexity of the problem can
be increased by increasing the dimension of variable
and number of phases. One can appreciate the similar-
ity of RPV model landscape in Fig. 2 by comparing

Fig. 2 A typical merit function landscape of the random-
phase volume model
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with the merit function landscape obtained in actual
combinatorial synthesis study (e.g. Cong et al., 1999).

Given the N–K model and the RPV model, the
sampling algorithm for optimization in combinatorial
synthesis and library design can be benchmarked.
1.2 Sampling policy

The simplest way of sampling the state space is to
use grid search followed by local search. However, grid
search becomes inefficient as the dimensionality of
state-space increases. Another class of search method
commonly used to solve high dimensional optimiza-
tion is stochastic search methods such as simulated
annealing (SA, Kirkpatrick et al., 1983). In a typical
SA scheme applied to combinatorial synthesis, a set of
reference data points are created; a set of candidate
points are generated. The values of the merit function
of the candidate data points are compared to those of
the reference data points. The reference data point is
then updated by the candidate according to the transi-
tion probability:

P

Y Y

Y Y
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where Y
i
c is the merit function of candidate data and Y

i
r

is the merit function of reference data. The tempera-
ture is reduced gradually according to a predetermined
annealing schedule to ensure that the system is not
trapped in a local minimum.

The updating procedure, given in Eq. (3), mimics
the importance-sampling strategy, known as the Me-
tropolis scheme, used in Monte Carlo simulation of
molecular ensembles. Importance sampling is pivotal
in calculating ensemble average in Monte Carlo simu-
lation because it reduces the number of times that total
energy of unimportant states are calculated and sam-
pled in the ensemble average. The number of interac-
tions evaluated in calculating the total energy of the
ensemble is proportional to n(n – 1)/2, n being the
number of molecules. The number of interactions
evaluated in calculating the transition probability in
Eq. (3) is proportional to n. Thus importance sampling
reduces the computing time significantly but ensures
that states sampled in the ensemble average are dis-
tributed according to the Maxwell–Boltzmann distri-
bution.

The objective of the combinatorial synthesis is,
however, slightly different. It is desirable that the true
global minimum is located, not the true ensemble av-
erage. Moreover, the merit function of a data point is
known only if the actual experiment is performed.
Therefore, unless some prior estimates of the merit
function are available, importance sampling cannot be
performed. The act of updating according to the dif-

ference between the merit function of the candidate
and the reference point according to the Metropolis
scheme only prevents the search from being trapped
in a local minimum prematurely. Without real impor-
tance sampling, simulated annealing will not be any
more effective than random search.
1.3 Generalized regression neural network

In order that existing data can be efficiently
modeled, the generalized regression network was used
(Specht, 1991). If the joint probability density func-
tion p(Y,   

r
X ) of a random input variable at   

r
X  having

an output variable Y is known, then the expected value
of the output at   

r
X  is given by:

  

Y X

Yp Y X dY

p Y X dY

r

r

r
( ) =

( )

( )
( )−∞

∞

−∞

∞

∫

∫

,

,

4

If p(Y,   
r
X ) is unknown, it can be estimated using exist-

ing measurements (  
r
Xi , Yi), i = 1, ···, n, as Gaussian

distribution function (Parzen, 1962):

  

˜ ,

exp exp

/
p Y X

n

X X X X Y Y

p p

i T i

i

n i

r

r r r r

( ) =
( )

⋅ −
−( ) −( )















−( )















( )

+( ) +( )

=
∑

1

2

1

2 2

5

1 2 1

2
1

2

2

π σ

σ σ

Expected value of the output at   
r
x  is given by

  

˜

exp

exp

Y X

X X X X
Y

X X X X

i T i

i

n
i

i T i

i

n

r

r r r r

r r r r( ) =

−
−( ) −( )















−
−( ) −( )















( )
=

=

∑

∑

2

2

6

2
1

2
1

σ

σ

There are several advantages of using GRNN in our
method.

1. GRNN requires no training. The prediction
model of GRNN in Eq. (6) requires only (  

r
Xi , Yi), the

location and results of data already sampled. σ is a
problem-specific smoothing factor which is preset and
kept constant. Therefore, the training phase of GRNN
is only a one-pass reading of all existing data.

2. Both integer and continuous inputs can be
used in GRNN although different values of σ may be
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needed. Therefore N–K landscape can be modelled ef-
ficiently. We compared the training and prediction ac-
curacies of a GRNN model to another popular neural
network, the radial basis function network (RBFN,
Chen et al., 1991) for a small N(=10)–K(=5) model.
The model has 1024 states. 100 states were randomly
taken as the training data, and the rest were chosen as
test set data. While both models can accurately repro-
duce the training data, the prediction mean square er-
ror of GRNN was found to be 0.066, much less than
that found by RBFN (0.519). Obviously, GRNN pro-
duces a much better model when the amount of data
sample is limited.

3. The predictions of GRNN always fall within
the maximum and minimum of the training data set.
Use of GRNN avoids unreasonable extrapolation. This
is extremely important if we wish to model a piecewise
continuous function such as the RPV model. Figure 3
compared GRNN, RBFN and back-propagation net-
work (BPN; Haykin, 1999) modeling of an RPV model
with a limited amount of training data. Again, GRNN
produces the most reasonable fitness landscape for the
RPV model.
1.4 Information energy

Given a model of all the presently available ex-
perimental data, we define the information energy in-
dex of any candidate point in the search space

  

U x
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where < Ỹ (  
r
X )> indicates the predicted value of the

fitness function using a GRNN model. At any candi-
date point, the better the predicted fitness function, the
lower is its information energy. The more valuable is
the information at that point.
1.5 Information entropy

Our knowledge of a candidate point can be mea-
sured by the information entropy (Shannon, 1948),
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Given the distribution function in Eq. (5), the infor-
mation entropy can be estimated as:
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Fig. 3 Fitness function surface obtained using different neural networks for RPV models
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The information entropy is just the average of the
square of the distance between a candidate point and
all existing data points. The higher the information
entropy, the more we know about the candidate point.
1.6 Information free energy and temperature an-

nealing
A candidate is worthy of experiment if it has a

potential of having a good fitness value (low informa-
tion energy), or its neighborhood has not been suffi-
ciently explored (high information entropy). During the
initial stages when the number of experiment is small,
the model predictions are of little value, experiments
should be devoted to sample un-chartered search space.
When sufficient information has been gathered, only
samples that are potentially important should be tested.
Chen et al. (1998) proposed an information free en-
ergy index:

F = U – TS (10)

with T being an annealing temperature proportional to
the number of experiment. The proper convergence of
the sampling procedure to the global minimum depends
on the annealing schedule. In this work, the very fast
re-annealing scheme proposed by Ingber (1989) was
used:

T = T
0
·exp(–c·k1/m) (11)

with T
0
, c, m being adjustable constants and k is the

total number of the experiments.
1.7 Flowchart

Our proposed sampling policy can be summarized
into a flowchart in Fig. 4 as the following steps.
(i) Obtain a GRNN model for all existing data.
(ii) Select the data with the best fitness function as

a reference.
(iii) Use random search to produce a candidate ex-

periment. Check if the experiment has been per-
formed. Generate another candidate if this ex-
periment has been performed. If the experiment
has not been performed, proceed to step (iv).

(iv) Use GRNN to calculate information energy and
information free energy at the candidate point.

(v) If the information free energy is smaller than or
equal to the free energy of the existing refer-
ence data, check if the batch has been filled. If
not go to step (iii), to generate additional ex-
periments.

(vi) If the information free energy is greater than the
free energy of the existing reference data, check
if the number of trial exceeds a preset number
NT (NT should be very large). If the number of
trial is less than NT, go to step (iii). If the number
has reached NT, a local search is used to create
a new experiment.

(vii) Repeat steps (iii) to (vi) until all candidate ex-

periments of the new batch have been selected.
(viii) Perform the experiments.
(ix) Repeat step (i) to (viii) at a reduced tempera-

ture until some stopping criterion is met, i.e. the
fitness function has met some specifications or
the number of batches reaches a preset number
NB.

We shall call the above sampling policy “free en-
ergy directed simulated annealing” (Free Energy-DSA,
FEDSA).

In the above algorithm, a local search is used if
directed search cannot produce an acceptable candi-
date. In the N–K model, this is done by mutating a
small number of variables of the array. In RPV model,
this is done by taking a random small step away from
the reference minimum.

Two undirected search methods: random search
(RS) and undirected simulated annealing (USA) are
used for comparison. In RS, a set of candidate experi-

Fig. 4 Flow chart of information directed search
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ments are selected randomly. The experiments are per-
formed and the samples in the reference data set are
updated if the fitness value of the new experiments is
better than that of the reference data. In undirected
simulated annealing (USA), a random search gener-
ates the new experiment candidates. The experiments
are performed without further screening. The Metropo-
lis scheme in Eq. (3) is used to determine whether the
reference data is replaced by the new data using ex-
perimental results.

2. Results and Discussion

2.1 Search efficiency
To demonstrate the advantages of our approach,

we shall use two simple examples: (i) an N–K model
with N = 20, Boolean state inputs of 0 and 1 and K = 4,
(ii) the RPV model with C = 3, D = 0, M = 15 and
Q

x
 = 2. The small N–K problem has only 1,048,576

states that allow exhaustive search and identification
of the true global minimum and the true fitness func-
tion distribution. The two-dimensional nature of the
RPV problem allows visualization of the search proc-
ess.

Figures 5 and 6 illustrate the decrease in the ob-
jective function with the number of batches of experi-
ments for the small N–K model and the RPV model
respectively. For a pure random search, the fitness func-
tion initially decreases rapidly but improvement be-
comes more and more difficult. An undirected simu-
lated annealing search causes the system to deviate
from the current minimum so that the search process
will avoid being trapped in a local minimum. Without
importance sampling, generation of states with better
objective fitness is by pure chance. The rate of finding
the best fitness function can only be as fast as random
search. If a model of the fitness function is constructed
using previous data and importance sampling (directed

Fig. 5 Changes in the best fitness function located using
different search strategies for a simple N–K prob-
lem (N = 20, K = 5)

Fig. 6 Changes in the best fitness function located using
different search strategies for a simple RPV prob-
lem (C = 3, M = 15, Q

x
 = 2)
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annealing) are performed based on information free en-
ergy, the rate of finding the best fitness function can
be much improved. In Fig. 5, we found that the FEDSA
located true global minimum even though the landscape
of the N–K model is very rugged. Random search and
undirected simulated annealing fails to locate the true
minimum. Similarly, FEDSA is able to find the approxi-
mate region of the true optimum at around the 10th
batch for the RPV model (Fig. 6). At this point, the
values of the fitness function obtained by a random
search procedure and simulated annealing are much
higher. Random search and undirected simulated an-
nealing fail to locate the true minimum.
2.2 Importance sampling

Figures 7 and 8 illustrate the distribution of the
data sampled at different stages in optimization. For
random search the distribution is similar to simulated
annealing and therefore not shown in the figures.

Figure 7 shows the distribution of the data sam-
pled from the 1st to 10th batches, 21st to 30th batches
and 51st to 60th batches. It is obvious that the distri-
bution of the data sampled shifted towards low energy
end. Such changes were not found for simulated an-
nealing. FEDSA allows us to perform importance sam-
pling in the early stages of the search. After the 50th
batch, mutation becomes dominant. There is not much
shift in the energy distribution of the data sampled.
During the later stages of the search, mutation fre-
quently became the sampling technique rather than
importance sampling. While the data sampled differ in
only a few bits, the rugged Nature of the fitness land-
scape results in a broad distribution of fitness values
for the sampled data.

For the RPV model, local search is important even
when temperature annealing virtually stopped. Impor-
tance sampling allows us to locate the correct phase.
Figure 8 illustrates the distributions of the data during
different stages of the optimization. In FEDSA, data
are scattered across the state space initially. Then data
are selected around the projected local minima. Finally
all data are concentrated in the correct phase with the
global minimum. This again illustrates the efficiency
of importance sampling. On the other hand, the data
are scattered around the entire search space during dif-
ferent stages of the optimization for undirected simu-
lated annealing. No importance sampling was per-
formed. The backgrounds of the figures in the column
under undirected simulated annealing in Fig. 8 are the
true contours of the RPV model. The backgrounds of
the figures under free energy DSA are contours of the
GRNN model. Note that the GRNN model captured
the general feature of the RPV model, but the details
are far from the global optimum. When we attempt to
create a model of a large search space it is important
that efforts are not wasted in reproducing the exact
details in regions that are not relevant in an optimiza-
tion sense.

2.3 Effect of problem size
If the size of the N–K model increases, exhaus-

tive search becomes difficult. Similarly as the size of
the RPV model increases visualization becomes im-
possible. Table 1 presents the optimal fitness function
located for a given number of experiments (NB = 100).
Since these are stochastic searches, the optimal value
located will vary from run to run as the size of the prob-
lem increases. Therefore the averages and standard
deviations of 10 different runs are listed. It was found
that Free-Energy-DSA always has lower averages and
smaller standard deviations than simulated annealing.
The difference between FEDSA and USA/RS becomes
larger as the size of the problem increases. This em-
phasizes the need of true importance sampling in solu-
tion of complex problems.
2.4 Computation Effort

The main objective of our approach is to reduce
the number of actual sampling. In this benchmarking
study, an actual sampling is equivalent to a function
evaluation. Figures 5 and 6 compared the values of ob-
jective function obtained at different number of func-

Fig. 7 Distribution of data sampled by different search
strategies at different stages of optimization for the
N–K model
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tion evaluations. It is obvious that our information di-
rected approach is more efficient than an undirected
sampling method such as random search or simulated
annealing in terms of finding an optimum landscape
with a least number of samplings. Since GRNN requires
no training, only a little extra computation effort is re-
quired to determine which sample is worth testing. In
the simulation study using N–K and RPV, since evalu-
ation of the objective function is relatively easy, the
net saving of computation time is negligible. However,
an actual library design and combinatorial synthesis,

an actual sampling usually involves the performance
of an experiment, or running an elaborate molecular
simulation. Actual sampling are time consuming and
expensive. The advantage of information-directed sam-
pling will be substantial.

Conclusions

In this work, we have demonstrated the importance
of true importance sampling in solving optimization
problems of high dimension. Our results show that

Fig. 8 Distribution of sampling points at different stages of optimization for the RPV model(C = 3, M = 15, Q
x
 = 2)
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brute force combinatorial techniques may be power-
ful, but the technique becomes much more effective if
we can organize the present knowledge periodically to
direct the search. We have demonstrated that the or-
ganization of knowledge need not be done in a theo-
retical manner. It can be done by constructing a simple
empirical model with sufficient flexibility. Due to the
large amount of data involved, this model should re-
quire a minimal regression computation but must also
be statistically sound. A generalized regression neural
network was selected to perform the task of modeling.
Furthermore, during early stages of the search, we must
not put too much emphasis on model predictions since
a large fraction of the search space remains unexplored.
An information entropy index allows us to direct the
search to unexplored regions of the search space. An
information free energy index was used to balance the
need to confirm the model predictions of regions of
optimality and the need of chartering unexplored search
space. True importance sampling can be achieved us-
ing this information free energy index and effective-
ness of combinatorial can be substantially improved.
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Nomenclature

  
Ai i

k

k1
L

α( ) = parameters in the PRV model
a

j
= j-th entry of the N-dimensional array in the NK

model

  
Bi i

k

k1
L

γ( ) = parameters in the PRV model
C = dimensions of the composition variables in the RPV

model
c = parameters in very fast simulated re-annealing
D = dimensions of the non-composition variables in the

RPV model
E = merit function of the RPV model
Eαγ = merit function of the NK model
F = information free energy
f

i
= symmetry factor of the polynomials

K = interactive loci in the NK model
k = number of the experiments

M = phase numbers of the composition variables
m = parameters in very fast simulated re-annealing
N = loci length in the NK model
p = joint probability density function
p̃ : = joint probability density function estimator

Q
x
, Q

z
= polynomial order of the composition and non-com-

position variables
S = information entropy
T = annealing temperature
T

0
= inital annealing temperature

U = information Energy
Uα = parameters in the RPV model
Wγ = parameters in the RPV model

  
r
w = non-composition variable vectors relative to the

phase center

  
r
X = input variable vectors in a general gression neural

network

  
r
x = composition variable vectors mole fraction

Y = output variables in a general gression neural net-
work or merit function

Ỹ = predict value of output in a general gression neu-
ral network

  
r
y = composition variable vectors relative to the phase

center

  
r
z = non-composition variable vectors mole fraction

α = composition phase index
γ = non-composition phase index
ξ

x
, ξ

z
= parameters in the RPV model

σ = smooth factor in a general regression neural net-
work

σ
a

= parameters in the NK model
σ

x
, σ

z
= parameters in the RPV model
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