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Abstract

Combustion in a boiler is too complex to be analytically described with mathematical models. To meet the needs of operation

optimization, on-site experiments guided by the statistical optimization methods are often necessary to achieve the optimum operating

conditions. This study proposes a new constrained optimization procedure using artificial neural networks as models for target processes.

Information analysis based on random search, fuzzy c-mean clustering, and minimization of information free energy is performed iteratively

in the procedure to suggest the location of future experiments, which can greatly reduce the number of experiments needed. The effectiveness

of the proposed procedure in searching optima is demonstrated by three case studies: (1) a bench-mark problem, namely minimization of the

modified Himmelblau function under a circle constraint; (2) both minimization of NOx and CO emissions and maximization of thermal

efficiency for a simulated combustion process of a boiler; (3) maximization of thermal efficiency within NOx and CO emission limits for the

same combustion process. The simulated combustion process is based on a commercial software package CHEMKIN, where 78 chemical

species and 467 chemical reactions related to the combustion mechanism are incorporated and a plug-flow model and a load-correlated

temperature distribution for the combustion tunnel of a boiler are used.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although there have been a lot of experimental and

theoretical studies on the basic physical and chemical

principles of a boiler’s operation, and great advance has

been made in understanding various aspects of the

operation, it is still impracticable, as Faravelli and co-

workers [1] have just pointed out, to couple detailed fluid

dynamics and kinetics in the combustion system design

even with the continuous increase of computer power, not to

mention to simulate a boiler and its various auxiliary

subsystems as a whole.

If fuel and environment conditions are specified, the

thermal efficiency of a given boiler depends mainly on

the air to fuel ratio, and on the distribution of air and fuel to

burners at different locations if two or more burners are

used. For different fuels and different furnace configur-

ations, the best air to fuel ratio and the best air and fuel

distributions are surely different, which may be roughly

estimated by analysis but can only be determined accurately

by testing runs. As for the control of trace pollutant

emissions (in terms of ppm or ppb NOx, SO2, etc.) of a

boiler, all of such uncertain factors as fuel compositions,

complexity of flow and temperature fields in the burning

chamber, and the complicated mechanism of chemical

reactions make model prediction highly unreliable.

The inability of theoretical analysis makes empirical

approaches necessary to explore the optimum operation

conditions of a boiler. Nordin et al. [2] used fractional

factorial design procedure and identified the important

factors of NOx reduction in a fluidized bed combustor (FBC)

with primary measures and selective non-catalytic
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reduction. Henttonen et al. [3] performed an optimizing

control of NOx and SO2 emissions in the FBC process based

on static models which were regressed from experimental

data. George [4] suggested a boiler test system in order to

monitor NOx emissions through optimizing various oper-

ation conditions in a comprehensive and systematical

manner, and claimed that achieving NOx emission reduction

targets does not necessarily mean equipment retrofits or

poor boiler performance.

The capability of artificial neural networks (ANNs) as a

universal modeling tool has been widely recognized in the

last 20 years, and Cybenko [5] showed that ANNs could

approximate any arbitrary non-linear functions. ANNs offer

an alternative approach to model process behavior, as they

do not require a priori knowledge of the process phenomena.

They learn by extracting imbedded patterns from data that

describe the relationship between the inputs and the outputs

in any given process phenomenon. When appropriate inputs

are applied to an ANN, the ANN acquires ‘knowledge’ from

the environment in a process known as ‘learning’. As a

result, the ANN assimilates information that can be recalled

later. ANNs are capable of handling complex and non-linear

problems, processing information rapidly and reducing the

engineering effort required in model development.

ANNs have been successfully applied to a variety of

problems such as process fault diagnosis, system identifi-

cation, pattern recognition, process modeling and control,

and statistical time series modeling. Kalogirou [6] gave a

review on the application of ANNs in energy systems.

Reifman et al. [7] developed an intelligent emissions

controller for fuel gas re-burning in coal-fired power plant,

and in their study, a feed-forward neural network (FFN) was

used to model the static non-linear relationships between the

distribution of injected natural gas into the upper region of

the furnace of a coal-fired boiler and the corresponding

oxides of nitrogen emissions exiting the furnace. Zhou et al.

[8] used an ANN model and genetic algorithms to optimize

low NOx pulverized coal combustion. Other instances of

ANNs applied in solving combustion problems include:

modeling the temporal evolution of a reduced combustion

system [9], predicting coal ash fusion temperature [10],

predicting coal/char combustion rate [11], conducting model

predictive control in thermal power plant [12], etc.

It is obvious that optimization of complex systems such

as the combustion process of a boiler is a trial-and-error

process. In such an iterative process, experimental test is

performed, and the test data are analyzed, and further test is

suggested based on the analysis, and such iterations

continue until satisfactory performance is achieved.

In this study, a novel optimization procedure is proposed

by extending the experimental design method developed by

the authors [13] to constrained cases, and is used to search

for the best operation conditions of a simulated coal-fired

combustion process. The proposed optimization procedure

uses ANNs to model the relationship of the performance

index with various operating variables, searches the built

response surface under constraints to produce candidate

points of next batch of test, determines the test points of next

batch through information analysis. This procedure works

iteratively and optimum conditions are expected after

several batches of test. The major advantages of the

proposed procedure are its abilities to deal with multi-

variables, to precisely determine the number and location of

future test experiments, to consider the non-analytical

constraints, and to locate multiple optima.

The objective of this study is to demonstrate the

effectiveness of the proposed optimization procedure in

searching for the optimum operation conditions of a boiler.

In the following context, a simplified model for the

combustion process of a coal-fired boiler is built, and the

optimization procedure is introduced and is applied to

optimize the operation conditions of the simulated combus-

tion process. It should be noted that the intent of this paper is

to describe the proposed optimization procedure and to

show its power in improving the overall performance of a

boiler’s combustion process to achieve as high thermal

efficiency and as low pollutant emissions as possible and not

to provide an in-depth analysis of a boiler’s combustion

behavior.

2. Model of the combustion process of a coal-fired boiler

The simulated boiler has a 17 m high vertical combustion

tunnel as shown in Fig. 1. There are two burners installed at

elevations 2 and 4 m, and each burner’s full load is designed

to be 2752 kg-coal/h. Coal and air are introduced into the

tunnel through the two burners. The amount of coal and air

to each burner can be regulated by controllers which are not

shown in Fig. 1.

Fuel used is pulverized coal whose element analysis is

listed in Table 1. Air to the burning tunnel has a volume

Fig. 1. Sketch of the burning tunnel of a boiler.
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composition of 78.4% N2, 20.8% O2, and 0.8% moisture.

Theoretical consumption of air is 9.7529 N m3/kg-coal to

convert the coal into corresponding smoke components

CO2, H2O, SO2, and N2. The low heat value of the coal is

32,387.7 kJ/kg-coal (or 7741 kcal/kg-coal).

The heat input to the tunnel from burner 1 and 2 are;

Q1 ¼ Fc;1DHc þ Fc;1Cp;cðTc 2 T0Þ þ Va;1Cp;aðTa 2 T0Þ ð1Þ

Q2 ¼ Fc;2DHc þ Fc;2Cp;cðTc 2 T0Þ þ Va;2Cp;aðTa 2 T0Þ ð2Þ

where, Q1, Q2 ¼ input heat from burners 1 and 2, kJ/h; Fc,1,

Fc,2 ¼ pulverized coal to burners 1 and 2, kg/h; Va,1,

Va,2 ¼ air to burners 1 and 2, N m3/h (std conditions are 0 8C

and 1 atm); T0 ¼ temperature at which heating value of coal

is measured, 25 8C; Tc ¼ temperature of the pulverized coal,

K; Ta ¼ temperature of the feed air, K; Cp,c ¼ heat capacity

of the pulverized coal, kJ/(kg K); Cp,a ¼ heat capacity of the

feed air, kJ/(kg K); DHc ¼ low heating value of the

pulverized coal, kJ/kg.

The heat loss caused by the smoke leaving the

combustion tunnel can be determined as follows;

Qs ¼ Vs{ys;CODHCO þ Cp;sðTs 2 T0Þ} ð3Þ

where, Qs ¼ heat loss with the leaving smoke, kJ/h; Vs ¼

flowrate of smoke, N m3/h; ys,CO ¼ concentration of CO in

the smoke, volume fraction; DHCO ¼ low heating value of

CO, kJ/N m3; Cp,s ¼ heat capacity of smoke, kJ/(N m3 K),

calculated from smoke composition; Ts ¼ temperature of

smoke at the outlet of the combustion tunnel.

As a primary approximation, the thermal efficiency, h,

used in this study is defined as follows;

h ¼ 1 2
Qs

Q1 þ Q2

� �
£ 100 ð4Þ

where the heat loss by unburnt carbon in the ash is assumed

negligible.

A commercial software package CHEMKIN developed

by Leeds University (Reaction Design, 2000. http://www.

reactiondesign.com), was used to calculate the concen-

trations of NOx and CO in the outlet smoke. One-dimension

plug-flow through the tunnel was assumed in the calculation

of CHEMKIN. For simplicity, homogeneous reaction is also

assumed in the combustion process that is to say, the fuel

coal is regarded as a gaseous mixture of elements C, H, O, S,

and N.

CHEMKIN requires to specify chemical reactions taking

place in the combustion process. 467 chemical reactions

were collected and incorporated into the calculation of the

combustion process, where 78 chemical species and radicals

are correlated by the reaction formula [14].

To start CHEMKIN, a temperature distribution along the

combustion tunnel is also needed, which is set by the

following equation;

T ¼ aTTr ð5Þ

where T ¼ temperature at current conditions, K; Tr ¼

temperature at reference conditions described by the curve

shown in Fig. 2, K; aT ¼ correlation factor as a function of

the heat input to the burning tunnel, which is set quite

arbitrarily in this study by the following correlation;

aT ¼

Q1

Qr;1

 !0:25

ðfor section 1Þ

Q2 þ Qs;1

Qr;2 þ Qsr;1

 !0:25

ðfor section 2Þ

8>>>>><
>>>>>:

ð6Þ

Qr,1, Qr,2 ¼ heat input from burner 1 and 2 as defined by

Eqs. (1) and (2), respectively, at reference conditions; Qs,1,

Qsr,1 ¼ heat of smoke from section 1 to section 2, as defined

by Eq. (3), at current and reference conditions, respectively.

Although the temperature profile shown in Fig. 2 was

taken from a pilot boiler and Eqs. (5) and (6) were

formulated by roughly fitting the running data of that boiler,

it must be emphasized that the temperature profile

established in this way is rather crude and is just served to

construct a qualitatively correct model of combustion.

For simplicity, we express the coal flow rate by an

auxiliary quantity Lc, which is the percentage of actual coal

flow rate in the burner’s full load, and the air flow rate by air

ratio aa, which is defined as the ratio of actually fed air over

that theoretically needed. Since there are two burners,

CHEMKIN simulates burner 1 (section 1: 0–3 m of the

burning tunnel), and burner 2 (section 2: 3–17 m of

the tunnel) sequentially, and the calculation procedure is

as the following:

(a) Give the flow rates of pulverized coal and air which are

fed to burners 1 and 2, and determine the temperature

Table 1

Element analysis of coal used in calculation

Element wt% mol%

C 77.26 49.16

H 5.76 43.70

O 11.93 5.70

S 4.28 1.02

N 0.77 0.42

Total 100.00 100.00

Fig. 2. Temperature distribution of the combustion tunnel at reference

conditions (Lc;1 ¼ Lc;2 ¼ 90% and aa;1 ¼ aa;2 ¼ 1:11).
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distribution in the combustion tunnel according to Eqs.

(5) and (6).

(b) Sum up coal and air to burner 1 to form a single stream,

and use CHEMKIN to determine the flow rate and

composition of the flow at the outlet of section 1.

(c) Sum up coal and air to burner 2 and the flow leaving

burner 1 to form a single stream, and use CHEMKIN to

determine the flow rate and composition of the flow at

the outlet of section 2.

(d) Calculate thermal efficiency and pollutant emissions.

It should be noted that the above model for combustion is

roughly estimated in the following aspects. (a) Plug-flow is

assumed through the combustion tunnel. (b) Homogenous

reaction is used in the combustion process and the

contribution of unburnt char in the ash to NOx and CO

formation is not included. (c) Temperature profile used in

this study is just an estimate because it is correlated to

complex heat transfer, flow field and other factors. (d)

Thermal efficiency defined in Eq. (4) is incomplete, since

heat loss caused by ash and water discharge, by incomple-

tely burnt coal particles, and by surface convection with and

radiation to the atmosphere, etc. is neglected. (e) The

included chemical species and reactions are approximate to

the true mechanism of chemical change in the combustion

process. (f) Compositions of coal and air are simplified

without considering ash and water.

The above considerations and assumptions in model

building will surely produce some shift and distortion to the

true relationship among all the variables of the combustion

process. As a primary approximation, however, the model is

based on the fundamental material and energy balance

equations and includes all the main aspects of the

combustion process, and it is our belief that the model is

qualitatively correct and is complicated enough to serve as

an example to demonstrate the effectiveness of an

optimization procedure.

3. Constrained optimization guided by information

analysis

For a general description of an optimization problem, we

have a performance index to be minimized and it can be

expressed by the following analytical function f

f ¼ f ðx; yÞ ð7Þ

with

y ¼ gðxÞ ð8Þ

subjected to the constraints

Haðx; yÞ # 0 ð9Þ

Hnðx; yÞ # 0 ð10Þ

where x ¼ ½x1;…; xNi
� is the vector of independent

design/operation variables; y ¼ ½y1;…; yNo
� is the vector of

the output variables which are functions of x, and the

functions (g ) can be a physical existence, e.g. a chemical

plant, or a system of mathematical equations; Ha is

constraints which can be analytically calculated from

known x and y, and Hn is non-analytical constraints.

In the case that the original model, functions g, is

expensive to be realized to get a response (it usually means

to perform complicated experiment or to spend long

computing time), it is worthwhile to spend more effort to

explore the existing response data in order to make a wiser

suggestion of the future generation of test points. There

hence exists a compromise that the total effort spent both at

making suggestion and getting response is minimal in the

time limit of working schedule. Because of the rapid

development of computing machines, it is almost always

desirable to reduce the number of experiments in the

optimization when experiment is needed to get a response.

Based on the above idea, we have the working logic of

the proposed optimization procedure as sketched in Fig. 3.

To initiate the optimization procedure, arrangement is given

to the initial batch of experiments by using, for instance, an

orthogonal array to all the identified independent design/

operation variables over several arbitrarily defined para-

metric levels covering the estimated ranges. The whole

procedure is iterative and is described stepwise in the

following context.

3.1. Correlation of the experimental data with ANNs

After each batch of experiments, all the existing response

data from the original model are correlated with an artificial

neural network (ANN) which may be called a secondary

model as contrasted to the original one. To have any

usefulness, the secondary model must be built more easily

and must be run more cheaply than the original model, and it

is clear that ANNs are very suitable for this purpose. In

addition constraints, which cannot be analytically

expressed, are also modeled by ANNs.

The common feed-forward ANNs of three layers are used

in this study, and their general architecture is depicted

elsewhere [13]. The input variables of the network are the

design/operation variables xp ¼ ½x
p
1;…; x

p
Ni
�: The hidden

layer consists of Nh neurons, whose output is given by

hjðx
pÞ ¼

XNi

i¼1

wh
jixi

p þ bh
j ; j ¼ 1; 2;…;Nh ð11Þ

The outputs of the whole ANN represent the predicted

response (or controlled) variables, yp ¼ ½y
p
1;…; y

p
No
�; and are

determined by

ŷkðx
pÞ ¼

XNh

j¼1

wo
kjz½hjðx

pÞ� þ bo
k ; k ¼ 1; 2;…;No ð12Þ

where No is the dimensions of the output vector, the input

and output component of the pth data pair are defined by

J.-Z. Chu et al. / Fuel 82 (2003) 693–703696



{xp; yp}; wo
kj and wh

ji are weights between the output and the

hidden layers and weights between the hidden and the input

layers, respectively; bo
k and bh

j are biases in the output and

hidden layers, respectively; and z is the output in the hidden

layer. The hyperbolic tangent activation function [15] is

used. The sum square error, E, which represents the

deviation of the predicted values from targeted ones is

used to evaluate the ability of the network

E ¼
1

P

XP
p¼1

XNo

k¼1

½ykðx
pÞ2 ŷkðx

pÞ�2 ð13Þ

where P is the number of experimental data pairs. The

pseudo-Gauss-Newton method [16,17] is used for training.

Due to the small number of training data, a statistical

technique called the leave-one-out (LOO) cross-validation

scheme [18] is used.

3.2. Production of candidate optimum points

This step is to get an overall understanding of the

response surface represented by the secondary model in the

whole range of design/operation variables with a random

search method. The result of this step is the production of a

near-optimum population of points, or candidate optimum

points, fulfilling all the constraints.

In product and process development the feature of

interest is the optimal operating condition. Multiple local

optima are frequently encountered. It is often necessary to

rate alternative local optima based on secondary objectives

such as safety, robustness, and so on. Therefore a non-

gradient search technique is adopted here. Implementation

of random search in this step is stated in detail elsewhere

[13]. Random search converges theoretically to the global

optimum, and several non-gradient optimization methods

are detailed by Jang et al. [19].

3.3. Suggesting the locations of further experiments

according to the result of information analysis on the

candidate optimum points

In this step, iterations are performed to suggest the most

promising points where optima may locate. In the iterations,

a quantity called information free energy (F ) is minimized

by selecting the number of clusters about the candidate

optimum points produced in the previous step. The cluster

centers serve as the suggested points of next batch of

experiments.

For the system of N points generated in the previous step,

if the centers of C clusters are determined by the fuzzy c-

means algorithm [13,20] and if a fuzzy membership of the

kth point with respect to the center of the ith cluster is

calculated as mik ðk ¼ 1; 2;…;N; i ¼ 1; 2;…;CÞ; the

information entropy is defined and evaluated as

S ¼
1

N

XC
i¼1

XN
k¼1

mik ln mik 2
XC
i¼1

Ni ln Ni

 !
ð14Þ

where Ni ¼
PN

k¼1mik is called the fuzzy number of data of

the ith cluster.

Another quantity called information energy is defined as

U ¼
XC
j¼1

Nj

N
f ½ci

; ŷðciÞ�2 fmin ð15Þ

where fmin is the value of the minimum f recorded in the

random search and f ½ci; ŷðciÞ� is the performance index

evaluated at the center of the ith cluster whose location is c i.

Fig. 3. Optimization algorithm guided by information analysis.

J.-Z. Chu et al. / Fuel 82 (2003) 693–703 697



It is clear that U is just the expected value of the

performance index.

The indices of information entropy and information

energy are measures of how well a set of cluster centers

represents the data points and how well a set of cluster

centers performs if it is chosen as the next set of

experiments, respectively. In order to avoid inconsistency

of results from considering them separately, a balance is

needed and is achieved by defining a composite information

index, the information free energy (F ) as follows;

F ¼ U 2 TS ð16Þ

where temperature T is a normalization factor and is defined

as

T ¼
fmax 2 fmin

ln P
ð17Þ

where fmax is the value of the maximum f recorded in the

random search and P is the total number of existing

experiments.

It is evident that with the increase of clusters, information

free energy will decrease when C is small, then pass a

minimum at a certain value of C, and finally increase.

Therefore, the terminating criterion of information analysis

iteration as suggested above is

FC 2 FC21 . 1 ð18Þ

where 1 is a small positive number.

From the above definitions for information entropy,

energy and free energy, it is clear that entropy increases and

energy decreases with the increase of clusters and that the

information free energy is a compromise of them two. At

early stages of optimization, temperature is high, infor-

mation entropy dominates, and more experiments (cluster

centers) are suggested to cover the whole feasible area

uniformly. Thus, helps to build a complete secondary

model. At final stages, temperature is low, and information

energy is the predominant part of information free energy,

which guides experiments conducted at possible optimum

points. Early batches of experiments build an approximate

outline of the variation of the objective function in the

feasible area, and the final batches locate precisely the

position of the optimum point. As a result, the final

secondary model is very accurate in the neighborhood of the

optimum point, but is only qualitatively correct in other

places. The evolution of the secondary model will be

demonstrated in a bench-mark test in Section 3.5. More

detailed discussion on the meaning of information entropy

and information free energy is found elsewhere [13].

3.4. Checking the convergence criterion

The final step of the iteration in the optimization

procedure is to check the convergence criterion which

usually means to see the difference between the

newly produced minima and those produced last time.

The procedure is terminated if the difference is within a

preset tolerance, otherwise the procedure is carried out by

performing new experiments at the suggested points from

the above step.

It should also be noted that the prediction of the

secondary model at the suggested test points will be very

close to the experimental results at the end of converging

process, which can also be a convergence criterion as it is

clear in the comparison of the mesh surfaces of the

Himmelblau function and its ANN counterpart (the

secondary model) in the following bench-mark test.

3.5. A Bench-mark test to the proposed optimization

procedure

As a primary test, the above optimization procedure is

used to detect the minima of a bench-mark problem which is

the modified Himmelblau function defined for 25 # x1 # 5

and 25 # x2 # 5

Zðx1; x2Þ ¼ ðx2
1 þ x2 2 11Þ2 þ ðx1 þ x2

2 2 7Þ2

þ x1 þ 3x2 þ 57 ð19Þ

under the constraint

x2
1 þ x2

2 # 3:52 ð20Þ

The mesh surface of Eq. (19) is shown in Fig. 4(a), and the

constraint circle is depicted on the contour plot in Fig. 4(b).

Note that we here assume that the constraint equation (20) is

unknown and should be treated as a non-analytical

constraint in minimization.

In the test calculation, the performance index is f ¼

Zðx1; x2Þ; the inequality (20) is regarded as a non-analytical

constraint Hn ¼ x2
1 þ x2

2 2 3:52 # 0 and is also modeled by

a feedfoward ANN.

As contrasted to the inability of traditional experimental

design methods to build an accurate model for the modified

Himmelblau function and to find the global optimum, the

proposed procedure can detect all the four minima with ease

in nine batches of experiments. The evolution history is

shown in Figs. 5 and 6.

The converging process as shown in Fig. 6, vividly

explains the meaning of information free energy as a

criterion for suggesting future experimental conditions. For

instance, the neural network model has only one minimum

after the initial batch of experiments (see Fig. 6(b) batch 1),

and the constraint is distorted from its original shape—a

circle. If decrease in information energy is used as the only

criterion, one experiment will be suggested in the next

batch. However, information entropy calls for more

experiments that are necessary to mold a more complete

performance surface as shown in Fig. 6(c) for batch 1. It is

shown in Fig. 6(a)–(c) that this algorithm captures all the

four Kuhn–Tucker points of this particular problem. From

the comparison of Fig. 4(a) and Fig. 5, it is clear that the

feed-forward ANN’s have a great power to capture

J.-Z. Chu et al. / Fuel 82 (2003) 693–703698



the functional relationship of the modified Himmelblau

function. The ANN model at the end of convergence is a

close approximation to the Himmelblau function in the

neighborhoods of the four minima and captures all the main

features of the Himmelblau function.

4. Optimization of the coal-fired boiler

In the simulated combustion process as stated previously,

there are four adjustable variables, namely, flow rates of

coal and air in burner 1 and 2 (Fc,1, Fc,2, Va,1, and Va,2), or

equivalently the burner’s percentage load and air ratio (Lc,1,

Lc,2, aa,1, and aa,2). Optimization here means that these four

variables are tuned to achieve the best performance of the

boiler under certain criterion and constraints. Two case

studies have been carried out and the results are stated in

Sections 4.1 and 4.2.

4.1. Case 1: thermal efficiency maximization and NOx and

CO minimization

In this case study, we try to detect the optimum

operation conditions of the simulated combustion process

Fig. 4. (a) Mesh surface of the three-dimensional modified Himmelblau function; (b) the corresponding contour with a constraint circle.

Fig. 5. Mesh surfaces of the output to the two inputs of the ANN model trained based on the accumulated data for different batch number.
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as stated in Section 2, in the range of 80–100% the full

load of the boiler. We pursue a set of operation

conditions at which the emissions of NOx and CO is

low and the thermal efficiency is high. That is to say, our

target is clean air and high thermal efficiency. As a

demonstration, the objective function to be minimized is

formulated as

f ¼
ys;NOx

2 aNOx

bNOx
2 aNOx

þ
ys;CO 2 aCO

bCO 2 aCO

þ
bh 2 h

bh 2 ah

ð21Þ

where ys,NOx
¼ concentration of NOx in the smoke,

volume fraction; ys,CO ¼ concentration of CO in

Fig. 6. Minimization of the modified Himmelblau function under a circle constraint. (a) Existing experimental points against the contour of Eq. (19) and the

constraint inequality (20). (b) Corresponding model contour whose solid points represent the local minimum points found. (c) The next batch of the

experimental points suggested by the proposed procedure, against the contour of Eq. (19).
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the smoke, volume fraction; h ¼ thermal efficiency as

defined in Eq. (4); a ¼ lower limit of a variable specified

by its subscript; b ¼ upper limit of a variable specified by

its subscript.

In Eq. (21), a’s and b’s are scale factors to make all the

three terms in the equation equally important. The values for

them can be roughly estimated from theoretical analysis and

previous experience.

To make the simulated combustion process more

realistic, noise is introduced into the simulated combustion

process by adding a random change in the coal’s

composition

zH ¼ zH;0 £ ð1 þ 0:035aÞ ð22aÞ

zC ¼ zC;0 2 0:035azH;0 ð22bÞ

where, zC,0 and zH,0 are the average compositions of carbon

and hydrogen in the coal, zC and zH are those used in

experiments, and a is a random number in the range

[21,1].

We can start the optimization procedure by forming an

orthogonal array of operation conditions as suggested in

Taguchi method [21], to cover the 80–100% load range in

three operation levels of the four operating variables (Lc,1,

Lc,2, aa,1, and aa,2). Table 2 lists the conditions and results of

the eighteen ‘experiments‘ in the initial batch. The best

operating condition among the initial experimental data is

No. 17 whose objective function f ¼ 53; while the worst

one is No. 3 whose f is 200.

Table 3 documents the evolving history of the

optimization process. In Table 3, the conditions and

results of the experiment which has the lowest objective

function ( f ) are listed for each batch of experiments, and

detailed intermediate results of the convergence process

are listed elsewhere [14]. Three out of the last four

experiments in Table 3 have close values of objective

function f, which indicates the convergence of the

optimization procedure if we remember the random

fluctuation in the coal’s compositions. The optimum

operating conditions are thus located at;

Burner 1:

Load percentage, Lc,1 89%

Air ratio, aa,1 1.011

Burner 2:

Load percentage, Lc,2 89%

Air ratio, aa,2 1.11

At these conditions, the thermal efficiency is 72.44%, and

concentrations of NOx and CO are ys;NOx
¼ 173 ppm; and

ys;CO ¼ 0:132 ppm:

4.2. Case 2: thermal efficiency maximization under NOx and

CO constraints

In real production and management, emissions of

NOx, CO and other pollutants are not necessarily

minimized as long as regulation is not violated. There-

fore, the boiler should be operated to maximize thermal

efficiency under the constraints of ys,NOx
, 210 ppm and

ys;CO , 1 ppm:

The operating variables are the same as in Case 1. It

should be noted that in this case, two feed-forward ANNs

are used to build the above two inequality constraints

from existing experimental data. Table 4 lists the

converging process of the proposed procedure. The last

three experiments in Table 4 have the similar opera-

ting conditions, emission concentrations, and thermal

Table 2

Orthogonal experiments in the initial (1st) batch for Case 1

No. Operation variables Emissionsa h

(%)

f

Lc,1

(%)

aa,1 Lc,2

(%)

aa,2 NOx

(ppm)

CO

(ppm)

1 80 1.01 80 1.01 182 16.4 75.05 112

2 90 1.11 90 1.11 207 0.104 71.09 89

3 100 1.21 100 1.21 258 0.0775 66.74 200

4 80 1.11 80 1.21 204 0.0716 71.37 82

5 90 1.21 90 1.01 195 0.0951 71.18 74

6 100 1.01 100 1.11 189 0.158 70.67 73

7 80 1.21 90 1.11 244 0.0693 70.56 138

8 90 1.01 100 1.21 246 0.0998 70.20 144

9 100 1.11 80 1.01 186 0.101 72.14 52

10 80 1.11 100 1.11 252 0.0957 70.65 146

11 90 1.21 80 1.21 192 0.0738 69.21 94

12 100 1.01 90 1.01 186 15.3 72.87 136

13 80 1.01 90 1.21 197 0.0946 71.36 74

14 90 1.11 100 1.01 216 0.121 71.44 95

15 100 1.21 80 1.11 198 0.0646 69.73 94

16 80 1.21 100 1.01 189 0.106 71.17 67

17 90 1.01 80 1.11 199 0.156 73.33 53

18 100 1.11 90 1.21 206 0.0786 68.96 114

a Concentration at STP and 6 vol% O2.

Table 3

Summary of the experiments in the nine batches for Case 1

No.a Operation variables Emissionsb h

(%)

f

Lc,1

(%)

aa,1 Lc,2

(%)

aa,2 NOx

(ppm)

CO

(ppm)

23/2 90 1.110 80 1.110 187 0.0828 71.67 58

25/3 92 1.110 84 1.088 196 0.0887 71.49 71

28/4 81 1.095 90 1.033 205 0.141 72.72 67

29/5 99 1.022 92 1.026 183 0.197 72.29 47

34/6 88 1.095 83 1.019 194 0.151 73.01 50

36/7 90 1.024 89 1.100 172 0.121 72.21 35

40/8 99 1.033 88 1.041 190 0.195 72.49 53

45/9 89 1.011 89 1.110 173 0.132 72.44 33

50/10 91 1.022 89 1.097 173 0.134 72.38 35

a Experiment series number/batch number.
b Concentration at STP and 6 vol% O2.
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efficiency. The optimum operation conditions are sum-

marized as;

Burner 1:

Load percentage, Lc,1 81%

Air ratio, aa,1 1.070

Burner 2:

Load percentage, Lc,2 83%

Air ratio, aa,2 1.016

At the optimum operating conditions, the thermal efficiency

is 73.76%, and concentrations of NOx and CO are

ys,NOx
¼ 183 ppm, and ys;CO ¼ 0:180 ppm: Because the

variation in the coal’s compositions, the NOx and CO

emissions are not right in the edge of regulation limit.

The above optimal operating conditions mean that the

loads of both burners are at the low end with medium excess

O2 for the first burner and very low excess O2 for the second

burner, which is quite reasonable to the physical and

chemical fundamentals.

5. Discussion and conclusion

It has been known that delaying the mixing of the

combustion air with the fuel (i.e. air staging) is an effective

means to reduce production of NOx in the combustion

process [22]. Also we know that there exists a best air ratio at

which thermal efficiency achieves the maximum for a given

fuel and a given combustion equipment. From these basic

principles of combustion, the optimum conditions for the

above two cases are justified. The improvement of thermal

efficiency from 72.4% in Case 1 to 73.8% in Case 2 shows

the great significance in optimizing the operation of boilers.

The effectiveness of the proposed optimization

procedure is clearly testified if we consider the complexity

of the simulated system. In the first case, the minimum is

located for a four-variable system within 10 batches by

calling on the original model (or performing test) 50 times,

and in the second case, the maximum is located for a four-

variable system under two constraints within six batches by

calling on the original model 33 times.

It should be noted that the results of optimization depend

on various boundary conditions such as coal types, furnace

configurations, seasonal atmospheric conditions, etc. The

above case studies only serve as examples to demonstrate

our optimization strategy.
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