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Abstract

Chemical processes are nonlinear. Model based control schemes such as model predictive control are highly related to the accu-
racy of the process model. For a highly nonlinear chemical system, it is clear to implement a nonlinear empirical model, such as
artificial neural network model, should be superior to a linear model such as dynamic matrix model. However, unlike linear sys-

tems, the accuracy of a nonlinear empirical model strongly depends on its original data or training data based on how the model is
built up. A regional-knowledge index is proposed in this study and applied in the analysis of dynamic artificial neural network
models in process control. New input patterns that imply extrapolations and thus unreliable prediction by an artificial neural net-

work model can be recognized from a significant decrease in the regional-knowledge index. To tackle the extrapolation problem and
assure stability of the control system, we propose to run a neural adaptive controller in parallel with a model predictive control. A
coordinator weights the outputs of these two controllers to make the final control decision. The present state of the controlled

process and the model fitness to the present input pattern determine the weightings of the controller’s output. The proposed analysis
method and the modified model predictive control architecture have been applied to a neutralization process and excellent control
performance is observed in this highly nonlinear system.
# 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The rapid development of computing technology
makes it possible to pursue better and better perfor-
mance in modeling and controlling process dynamics. In
order to treat high non-linearity and complex dynamics,
features of a process, as expressed by some mathema-
tical relationships, which are called a process model,
have to be taken into account in the design and oper-
ation of the corresponding control system. A number of
model-based control schemes have been proposed to
incorporate a process model into a control system.
Hussain [1] in his review of the applications of neural
networks in process control categorized them in three
classes: predictive control, inverse-model based control,
and adaptive control. Among them, predictive control is
the most commonly used. Dutta and Rhinehart [2] gave a
brief comparison of various model-based control schemes.
Instigated by the great success of dynamic matrix

control (DMC) [3,4], the theory of model predictive
control (MPC) has been receiving intensive attention in
the process control area [5]. The importance of MPC is
that it provides a general control scheme in which
material and/or energy conversion equipments and the
control devices can be considered as a whole in the
design of control systems. The basic idea of MPC is to
use a model to predict the future output trajectory of a
process and compute a series of controller actions to
minimize the difference between the predicted trajectory
and a user-specified one, subject to constraints [6]. MPC
works in a centralized manner for multivariable con-
strained control problems through a multivariable mini-
mization, which provides a natural decoupling measure
essential for control of highly interactive systems.
It is clear that MPC demands a dynamic process

model of proper accuracy and execution speed, though
the feedback mechanism of MPC tolerates some model
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mismatch. In the conventional dynamic matrix control
which can be seen as linear model predictive control
(LMPC), process outputs in the prediction horizon are
expressed as a linear function of the input and output
itself in the past, and coefficients in the model are
determined from time series response data of the target
process. Such a linear model is a perfect description for
linear systems, and is a local approximation for non-
linear systems. However, the region of acceptable linear
approximation for systems with high non-linearity will
become very small, and such a linear model will not
justify the efforts needed to build it.
Therefore, linear model predictive control such asDMC

will work well only for slightly nonlinear or slowly
responding processes [7]. For highly nonlinear processes,
nonlinear models are necessary, and nonlinear model pre-
dictive control (NMPC) strategy has been studied [8–10].
In the implementation of nonlinear model predictive

control [8–10], developing a valid dynamic model is the
major theme of the work. Artificial neural networks
(ANNs) as a process model for control purpose are
superior to other conventional modeling methods, as
pointed out by several authors [1,11].
(1) Models derived from first principles are usually

difficult and/or costly to develop for processes, which
are not well understood or very complex. Further, in
order to evaluate model parameters and to make
models concise enough for online execution, inevitable
assumptions and simplifications included in this kind of
models may cause a severe decrease in the model
accuracy.
(2) Artificial neural networks provide a general

approach for extracting process dynamics from input-
output data only. Their learning ability makes them
versatile and friendly for practical applications. With
their great power for approximating complex function-
ality [12], their compact form and great speed of informa-
tion retrieval make them highly suitable for online uses.
In a recent review, Hussain [1] summarized the active

research on the application of artificial neural networks
in model-based control design, and he noted that ANNs
have almost become the standard empirical models for
the purpose of nonlinear process control [13–15].
Because of their empirical characteristics, ANN mod-

els need to be trained with a lot of operation data to
cover certain operating ranges of process. Uncertainty
of an ANN model often exists and may be severe for
some special ranges. For instance, in a range around the
equivalence point of neutralization where the process
output (pH) is highly sensitive to the manipulated variable
(flow rate of acid or base stream), training data is usually
scarce, and an ANN model would be hence very rough.
Uncertainty in the employed model will degrade MPC

and severe errors may cause it to fail completely. When
artificial neural networks are used as a process model,
unknown input patterns often occur, which makes the
future prediction unreliable and thus causes unstable
control performance. Such a situation almost surely
exists for highly sensitive and highly nonlinear processes
because training patterns are hardly complete.
Since model uncertainty is inevitable, the following

two points are essential to guarantee the performance
of MPC. (1) Identify the uncertainty of the model;
(2) Increase the robustness of MPC to cope with the
model’s uncertainty. In the work of Lin and Jang
[16], a systematic approach based on information
theory was presented for designing the data set used
to train an ANN for the purpose of a complete pro-
cess model. However, implementation of such designs
in industrial circumstances may be very expensive and
even impossible. By extending radial basis function net-
works (RBFN), Leonard et al. [17] proposed a ‘‘validity
index network’’ that computes the reliability and con-
fidence of its own output and indicates local regions of
poor fit and extrapolation. Their idea of using Parzen’s
estimator to calculate the probability density of training
data is universal for other kind of empirical models. To
accommodate the uncertainty of the model used in
MPC, additional mechanism is necessary, and the
neural adaptive controller (NAC) of Krishnapura and
Jutan [18] is worthy of consideration.
The concept of neural adaptive control is simply from

the idea that the back propagation mechanism of train-
ing of an artificial neural network can be served as a
general approach for dynamic programming. Psaltis et
al. [19] for the first time proposed a so-called specialized
learning architecture in which an artificial neural net-
work will be trained to learn for specific outputs
through a modified back propagation algorithm.
Nguyen et al. [20] proposed a similar algorithm called
self-learning control system with a neural network con-
troller and a neural network model that propagates
back the error. Loh et al. [21] modified it as a model
reference artificial neural net control strategy and
applied it to a pH control system. Krishnapura and Jutan
[18] reduces the large number of the hidden layer nodes to
a single one and thus eliminates a lot of connection
weights that is estimated for on-line adaptations.
A neural adaptive controller (NAC) can be thought

of as an auto-tuning feedback controller without any
model requirement, and it provides a strong feedback
mechanism through its localized learning algorithm
and thus has a strong power to stabilize a process. We
can adjust the step size of the weight adaptation by
setting the learning rate. If the system responds slowly
or does not possess strong non-linearity, the neural
adaptive controller will have enough time for adapting
and learning so that the control performance is good.
But if the system responds fast and has high non-line-
arity, such as in the case of pH control systems, the
neural adaptive controller will need much more time
than usual to learn the path toward the set point and
424 P.-F. Tsai et al. / Journal of Process Control 13 (2002) 423–435



may cause the whole system to oscillate. It also
becomes clumsy for frequent or large disturbances/set-
point changes just because of its local adaptation
mechanism.
From the features of the neural adaptive control dis-

cussed above, we believe that the neural adaptive con-
trol and the conventional model predictive control can
be a complement to each other. MPC can be used to
provide global guidance to NAC, while NAC can be
used as the backup to MPC when the model is not
reliable around some operation regions. Of course,
some certain coordination is needed to make them work
harmonically. We determine the model performance at
every time step with the application of probability den-
sity function, which shows the relative operating regio-
nal knowledge as a guiding index to coordinate the two
controllers. This is the main idea in designing the robust
model predictive control architecture proposed in this
study.
For demonstrating the effectiveness of the methods

proposed in this study, a neutralization process is cho-
sen as the target system. The pH control system is a
challenging control problem due to its high non-line-
arity and sensitivity and also is a widely used process in
industrial practice. The equivalence point and the
titration curve depend on the compounds. This prob-
lem has been benchmarked in many control schemes
such as various PID control strategies [22,23] and linear
and nonlinear model-based techniques [24,25]. Palancar
et al. [26] proposed a rather complicated control struc-
ture that was similar to the conventional MPC and
included two artificial neural networks to model the
process and the inverse of the process respectively. In the
work of Syu [27], a recurrent neural network model was
applied in the control of the pH environment in a peni-
cillin reactor.
The rest of this paper is organized in five sections.

Section 2 presents the regional knowledge analysis of
artificial neural network model. In Section 3, the pro-
posed robust model predictive control architecture is
introduced, and testing results of the pattern analysis
method and the new control architecture on a neu-
tralization process are demonstrated in Section 4. Con-
cluding remarks are finally made in Section 5.
2. Regional knowledge analysis of artificial neural

network models

In this paper, a feed-forward artificial neural network
(FFN) model as depicted in Fig. 1, is implemented to
control a neutralization process. Note that the following
analysis is general and thus not limited to the case of
FFN. For a single input and single output (SISO)
dynamic system, any dynamic model, can be expressed
in the following form:
y~kþ1 ¼ f yk; yk�1; . . . ; yk�n; uk; uk�1; . . . ; uk�mð Þ

k ¼ 0; 1; 2; . . .
ð1Þ

where u and y are the input and the measured output, ?
is the predicted output, k stands for the current time
instant, and n and m are the output and input orders.
For convenience of statement, we define

! ¼ yk; yk�1; . . . ; yk�n; uk; uk�1; . . . ; uk�mð Þ ð2Þ

and ! is called an event in the dynamic space and is a
general form of the input pattern to the artificial neural
network model. Because yk+1 is uniquely determined by
the real process, we have the corresponding augmented
event as follows:

� ¼ ykþ1; !ð Þ

¼ ykþ1; yk; yk�1; . . . ; yk�n; uk; uk�1; . . . ; uk�mð Þ ð3Þ

Assume that the following training data set are used
in building the above neural network model:

� ¼
�
�i

¼ yikþ1; y
i
k; y

i
k�1; . . . ; y

i
k�n; u

i
k; u

i
k�1; . . . ; u

i
k�m

� �
ji¼1;...;Ng

ð4Þ

And the corresponding set of input patterns is
� ¼ !i ¼ yik; y
i
k�1; . . . ; y

i
k�n; u

i
k; u

i
k�1; . . . ; u

i
k�m

� �
ji¼1;...;N

� �
ð5Þ

Our problem is how to know whether an input pat-
tern is included in the training data set or not. On the
Fig. 1. A feed-forward neural network as the process model.
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other hand, for a highly dimensional input event, we
have to estimate how much the system knowledge we
have around the neighborhood of the input event. If
there are many training data points in this region, it
means the event sits in a well-explored area and the
model is suitable for predicting the outcome of the
event. Otherwise, if the input event sits in an unfamiliar
region, which has only few data points in it, the model
prediction will very likely fail when it is highly non-
linear. This problem is meaningful because an artificial
neural network model is usually assumed to be reliable
only when interpolation among learnt patterns is per-
formed. In deriving a criterion for the above judgment,
the concept of Parzen–Rosenblatt probability density
function [28] is used and extended as an index to
measure the reliability of the model prediction.
The Parzen–Rosenblatt density estimate of a new event,

!new, based on the training data set, �, is defined as:

fO !newð Þ ¼
1

Nhm0

XN
i¼1

K
!new � !i

h

� �
ð6Þ

where the smoothing parameter, h, is a positive number
called bandwidth or simply width, which controls the
span size of the kernel function, K !new�!i

h

� �
and m0 is the

dimensionality of the event set, �. The kernel functions,
K, are various and, however, both theoretical and
practical considerations limit the choice. A well-known
and widely used kernel is the multivariate Gaussian
distribution:

K
!new � !i

h

� �
¼

1

2�h2ð Þ
m0=2

exp
!new � !ik k2

2h2

� 	
ð7Þ

Parzen-Rosenblatt probability density function is based
on the distances between the new event, !new, and the
events, !i, of training data set, �, through the kernel
functions. Once!new is close to some!i, the relative kernel
functions will give higher values and those !i which are
not in the neighborhood will give lower values in the
summation. The above probability density function (6)
is denoted as regional knowledge index of each new
event occurred to the process and every training data
point is involved in calculating it. The kernel function
plays a role just like a membership function of distance.
In other words, if a region is crowded with data points,
the ‘‘density’’ will be high, and it also implies that we
probably have enough knowledge about this region.
The role of regional knowledge index in the proposed
coordinator will be thoroughly discussed in Section 3.3.
The above treatment on the reliability of empirical

models, direct use of Parzen–Rosenblatt probability
density over all the existing training data, provides a
concise approach for control applications. Such a den-
sity is virtually the same as used by Leonard et al. [17],
except that they calculate the density of an event by
weight-averaging the densities of the cluster centers
obtained in training radial basis function networks
(RBFN). As a matter of fact, the weight averaging
approach will be reduced to the direct use of Parzen–
Rosenblatt probability density if every point in the
training set is taken as a center and the same activation
function is used for each center, which is the idea of
general regression neural network (GRNN). The den-
sity of any new event will locate among the values at the
existing centers due to the interpolation [17], which
requires a careful decision on the number and distribu-
tion of the centers in order to guarantee a true repre-
sentation of the centers to all the existing data points in
the training set.
3. Architecture for robust model predictive control

In the introduction of this paper, a brief analysis is
presented about the features of the conventional model
predictive control and the neural adaptive control. Ser-
ious uncertainty of the used model will endanger the
stability of model predictive control. In such cases,
additional or backup tuning measures are necessary,
and the neural adaptive controller is suggested because
its localized learning algorithm provides a model-free
auto-tuning feedback mechanism. Based upon this ana-
lysis, a new architecture called robust model predictive
control (RMPC) is proposed as a modification to the
conventional MPC and is illustrated in Fig. 2. The pro-
posed RMPC is composed of three parts: (1) a model
predictive control scheme; (2) a neural adaptive con-
troller (NAC) running in parallel with the MPC, and (3)
a coordinator to decide the final control action accord-
ing to the outputs of the parallel NAC and MPC and
the fitness of the model used. In the following context,
the three elements of RMPC are introduced.

3.1. Model predictive control

The proposed robust model predictive control shown in
Fig. 2 is reduced to a standard model predictive control if
we set u=uMPC in the coordinator. The optimizer
performs the following constrained minimization
problem:

Min
ukþ1;ukþ2;...;ukþP

XP
j¼1

’j y~kþj � yd;kþj

� �2
þ�j�u2kþj ð9Þ

subject to

umin 4 ukþj 4 umax j ¼ 1; 2; . . . ;P ð10aÞ

�ukþj



 

4�umax j ¼ 1; 2; . . . ;P ð10bÞ

where yd is the set point value, P is the length of the
prediction horizon, and ’ and � are weights and are set
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to be unit in this study. The optimal control sequence
ukþ1; ukþ2; . . . ; ukþP

� �
can be found with a multivariate

optimization procedure.

3.2. Neural adaptive control

If we set u=uNAC in the coordinator, Fig. 2 is reduced
to the neural adaptive control by Krishnapura and
Jutan [18] with a detailed structure shown in Fig. 3. The
neural adaptive controller has three inputs, the set point
yd, the past value of the output y, and the control action
u. There are two nonlinear nodes with sigmoid activa-
tion function in the hidden layer and the output layer,
respectively, and four adjustable weights (black dots in
Fig. 3) for the three inputs and the one output of the
hidden node. Such a controller can be expressed as an
augmented network by including the process as an
unchangeable node.
The whole system works by updating all the four

connecting weights in the network to minimize the
deviation (E) of the process output from its set-point
value at current time instant k:

Ek ¼
1

2
yd;k � yk
� �2

ð11Þ

This error signal is generated at the output of the
plant and is passed backward to the neural network
controller through the plant and is minimized with the
steepest descent method according to the following
equation:

W
lð Þ
ij;k ¼ W

lð Þ
ij;k�1 � �

@E

@W lð Þ
ij

 !
k

ð12Þ

where Wij
(1) is the weight connecting node i in the

upstream layer l and node j in the downstream layer
l+1 (l=1, 2 and 3 for the input, hidden, and output
layers respectively), and � is a constant denoting the
Fig. 2. Architecture of the robust model predictive control (RMPC).
Fig. 3. Neural adaptive controller structure.
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learning rate of the network. The derivative can be for-
mulated by applying the chain rule of differentiation:

@E

@W lð Þ
ij

¼ � yd � yð ÞI
lð Þ
i

df
lþ2ð Þ

j

dx

 !

	
@y

@u

� 	X
r

W
lþ1ð Þ

jr

df lþ1ð Þ
r

dx

� 	

l ¼ 1; 2ð Þ

ð13Þ

where Ii
(l) is the input to node i in layer l,

df
lð Þ

i

dx

� �
is deri-

vative of activation function of node i in layer l with
respect to its only input x. It is not easy to estimate the
Jacobian of the process, @y

@u in Eq. (13) at every sam-
pling instant. Psaltis et al. [29] used an iterative
approach to evaluate it. Krishnapura and Jutan [18]
proposed the use of a sigmoid function to approximate
the process input-output gain information. Nguyen et
al. [20] constructed an ANN model for the same pur-
pose. Yang et al. [30] proposed a so-called online adap-
tive neural-network-based controller (OANNC) to
implicitly estimate the Jacobian values. As a matter of
fact, @y

@u can be thought of as a scaling factor, which
decides the direction (sign of @y

@u) and magnitude
@y
@u

 � �
of the gradient vector. In the training phase with stee-
pest decent optimization, the error term (yd�y) in Eq.
(13) is useful in speeding up the minimization process
and in making a more flexible learning rate. The learn-
ing rate � is usually fixed and a small value of it is used
to perform a fixed-step-size evolution whose direction is
determined by the normalized gradient. Thus, magni-
tude part, @y

@u

  of @y
@u can be ignored, since � and (yd�y)

are enough to determine the overall learning rate of the
neural adaptive network. In this study, we propose that
� be tuned based on appropriate technique such as IAE.

3.3. Coordinator

In the proposed architecture as shown in Fig. 2, the
model predictive controller and the neural adaptive
controller run in parallel. A coordinator is designed to
make the final decision based on the outputs of the
above two controllers. Obviously, knowledge about the
current state of the process and the accuracy of the
ANN model used by the MPC is necessary to make a
wise decision.
As a preliminary test, the following equation is used

to combine the outputs of the MPC and the NAC:

u ¼  uMPC þ 1�  ð ÞuMPC ð14Þ

where  is a decision factor with the following properties:

1. The decision factor  is a positive number

between 0 and 1.
2.  is a model-reliability index that weights the

control actions from model predictive controller
and neural adaptive controller. If the model is
built with perfect predicting precision,  is taken
to be 1, otherwise, it decreases with the precision.

3. The model predictive controller may have differ-

ent performance in different operating area. So
the value of decision factor is changing with the
operating conditions.

4. The decision factor is thus determined by the

regional knowledge index in Eq. (6). The higher
values of regional knowledge index means the
region around the input event is well explored
and implying we have more knowledge about it so
that higher  is suggested. In the other words, is
a function of region-knowledge index, f̂O onewð Þ.

For simplicity, the following linear form denotes the
decision factor  is implemented in this work:

 ¼ � f̂� onewð Þ

� �
¼

1

b� a
f̂� onewð Þ �

a

b� a

for a < f̂� !newð Þ4 b ð15Þ

where a and b are constants, and f̂O !newð Þ4 a;  =0
and f̂O !newð Þ > b;  =1 as shown in Fig. 4.
4. pH control

In this part, the proportional-integral (PI) controller
tuned by classical one-quarter decay method and by the
internal model control (IMC) algorithm of Chien et al.
[31], the conventional model predictive controller
(MPC), the neural adaptive controller (NAC), and the
proposed robust model predictive control (RMPC) are
used in a simulated neutralization process, and com-
parison results are presented to show the great super-
iority of RMPC over all its counterparts.
Fig. 4.  vs. f̂O !newð Þ.
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4.1. pH control system

The simulated pH control system is adopted from
Palancar [26] and is shown in Fig. 5. There are two inlet
streams to the continuous stirred tank of reaction
(CSTR), the acid flow, QA, an aqueous solution of ace-
tic acid and propionic acid, and the base flow, QB, an
aqueous solution of sodium hydroxide. The outlet
stream is Q.
In this single input and single output system, the

manipulated variable is the base stream flow rate and
controlled variable is the pH value of the system. The
titration curve for this system is shown in Fig. 6 which
shows an equivalence point around pH=8.9.
The neutralization reactions are as follows:

AcH () Ac� þ Hþ ð17Þ

PrH () Pr� þ Hþ ð18Þ

NaOH () OH� þ Naþ ð19Þ

H2O () OH� þ Hþ ð20Þ

The reactions take place in the aqueous solution and
the concentrations inside the CSTR are easily calculated
by material balance equations. Those equations also
provide the dynamic transient states of the system and
they are:

QAC0PrH ¼ QCPrH þ V
dCPrH

dt
ð21Þ

QAC0AcH ¼ QCAcH þ V
dCAcH

dt
ð22Þ

QBC0NaOH ¼ QCNaOH þ V
dCNaOH

dt
ð23Þ

where CAcH, CPrH and CNaOH are concentrations of
components AcH, PrH and NaOH, V is the volume of
the reactor. The pH value is calculated with the com-
positions and the dissociation constants by the follow-
ing formula:
CAcH

1þ
10�pH

KAcH

þ
CPrH

1þ
10�pH

KPrH

þ 10 pH�14ð Þ

¼ CNaOH þ 10�pH ð24Þ

pKAcH ¼ 4:75 ð25Þ

pKPrH ¼ 4:87 ð26Þ

pH ¼ �log10 Hþ
� �

ð27Þ

The system’s initial conditions are listed in Table 1.

4.2. Data for training the ANN model

The data for training the ANN model used in the
conventional MPC, and the proposed RMPC is gener-
ated by changing the set-point values to the PI con-
troller, according to a five-cell pseudo-random binary
sequence (PRBS). The PRBS includes 25-1=31 signal
patterns. The sampling and the control actions take
place every 10 s. The training data thus obtained are
shown in Fig. 7.

4.3. Artificial neural network model

A three-layered feed-forward neural network with 6
inputs as shown in Fig. 1 is employed to build a model
for MPC and RMPC. The inputs are the base flow rates
and pH values at the current time instant, k, and the
previous two time instants, k�1 and k�2. Since a simple
structured ANN model may not be able to work well in
the pH system as pointed out by Wang et al. [32], eight
nodes are used in the hidden layer to catch the strong
non-linearity and the output is the predicted pH value
at the next time instant, k+1.
The training set consists of 320 data points while the

testing set 150 data points. The training and testing
results are illustrated in Figs. 8 and 9. If we consider that
the predicted points falling beyond the range of �1 of
real pH value are outliers, then 4 points out of 320 points
are outliers in the training set while 40 out of 150 in the
testing set. In other words, the outlier percentages for the
training and testing set are 1.25 and 26.67% respec-
tively. These two figures show that good agreement
between the ‘‘experimental’’ data and the predicted ones
of the ANN model for most data in the training set, but
not so for the testing set. Most of these outliers take pH
values near to the equivalence point of this neutraliza-
tion system. The data points sitting in the region from
pH 7 to pH 11 are very few and most data points crowd
in the regions lower than pH 7 and higher than pH 11.
The region close to the equivalence point is very poorly
explored and the FFN model is also failed here.
Fig. 5. Diagram of the simulated neutralization CSTR.
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4.4. Comparison of the simulation results

The neural adaptive controller used has three
inputs:QB,k�1, pHk and pHk�1, and is initiated by run-
ning it for some time at the steady state of the process.
In tuning the PI controller by the one-quarter decay
ratio response, the ultimate gain and period of the pro-
cess are found to be Kcuffi 750 and Tuffi 30. The ANN
model as stated above is used in the conventional MPC
and the proposed RMPC. The prediction horizon for
both MPC and RMPC is one time step ahead.
The setup of RMPC include the bandwidth (h) in Eq.

(6) and parameters a and b in Eq. (15). As pointed out
by Leonard et al. [17], the bandwidth is crucial for the
discussion of a ‘‘local’’ error measure for a model. If h is
too small, the neighborhood considered to be local to
the test point will not contain enough data to estimate
the model accuracy and the test for extrapolation,
namely lack of data, will be overly sensitive. If h is too
large, the local variation in accuracy will be missed and
the test for extrapolation will be insensitive. Specht [33]
has suggested that the bandwidth be selected between
0.1 and 0.3. For the studied pH control system, the
bandwidth is set to be 0.1 according to a test result
shown in Fig. 10. In the test, the IAE was recorded for a
step change from pH 7 to 10 at each selected value of
the bandwidth. It is clear from this figure that bigger
bandwidth causes smoother and wider density distribu-
tion and that every point is taken as well known after
bandwidth being greater than 0.3. Then the MPC dom-
inates the control actions and the NAC stops working.
However, for the bandwidth lower than 0.05, the NAC
takes over the control priority. Therefore, the IAE will
only change when the bandwidth value lies between 0.05
and 0.3. A minimum occurs at 0.1, which is thus used as
our bandwidth. Three cases have been studied and the
results are listed separately as following subsections.
Parameters a and b in Eq. (15) can be easily determined
by observing the sharp drops in RKI when extrapola-
tion occurs, as will be seen in the regional knowledge
index (RKI) plots in the following examples.

4.4.1. Case 1. Step change in set point
In this case, the above five control schemes are tested

against a step change of the set point from pH=7 up to
Fig. 6. Titration curve of pH simulation.
Table 1

Initial states of the pH control system
pH
 8.9
C0, AcH
 0.1 mol/l
C0, PrH
 0.1 mol/l
C0, NaOH
 0.2 mol/l
QA
 0.003 l/s
QB
 0.003 l/s
Q
 0.006 l/s
V
 1.75 l
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pH=10 at the 700th s. The parallel running results are
shown in Figs. 11–15 for the five controllers. Figs. 11
and 12 show that the PI controllers tuned by the one-
quarter decay method and by the internal model control
(IMC) algorithm (�cl=500) do not work, though the
IMC-tuned PI performs better at big �cl than the PI
tuned by the one-quarter decay method. The MPC does
not work either in this system as shown in Fig. 13. The
neural adaptive controller works well if its learning rate
parameter � is well tuned (�=0.1 for this particular
example), as shown in Fig. 14, though long time is nee-
ded for it to compensate the error gradually in a feed-
back manner. The proposed RMPC behaves excellently
as illustrated in Fig. 15.
It should be noted that as shown in Fig. 15, the

regional knowledge index, the probability density func-
tion decreases abruptly around the equivalence point.
This is due to few experimental data around this point
as shown in Figs. 8 and 9. The decrease of the regional
knowledge index implies that the system is moving to a
poorly known region where the model is unreliable and
the weighting for MPC is reduced by the coordinator.
In order to show how the coordinator works, we zoom
in the area around the 700th s where the set point
changes from pH 7 to pH 10 in Fig. 16. The MPC sug-
gests a much more aggressive control action than NAC
does and the coordinator combines them according to
the regional knowledge index, which leads to a mild
control action between them.

4.4.2. Case 2. A sequence of step changes in set point
The surviving two controllers in case 1, namely NAC

and the proposed RMPC are further tested against a
sequence of step changes in set point, and the results
Fig. 7. Plots of training data (solid line: response; dotted line: set point).
Fig. 8. Training result of the ANN model.
 Fig. 9. Testing result of the ANN model.
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are depicted in Figs. 17 and 18. As expected, NAC
deteriorates rapidly when facing successive fast changes
of large magnitudes, because its feedback mechanism
needs long enough time to bring the system to a steady
state. Contrary, RMPC works well even at the sharp
equivalence point of neutralization.
4.4.3. Case 3. Disturbance in the acidic stream flow rate
In order to evaluate the disturbance-proof capability of

the proposed RMPC, it is tested against a 20% reduction
in the unmeasured acidic stream flow rate at the 500th s.
Parallel tests are carried out for NAC and the conven-
tional MPC. The testing results are shown in Figs. 19–21.
Fig. 10. Results of the test for determining the bandwidth in Eq. (6).
Fig. 11. PI control tuned by 1/4 decay method against a step change

in set point from pH=7 to 10 (solid line: response; dotted line: set

point).
Fig. 12. PI control tuned by the IMC algorithm (�cl=500) against a

step change in set point from pH=7 to 10 (solid line: response; dotted

line: set point).
Fig. 13. MPC against a step change in set point from pH=7 to 10

(solid line: response; dotted line: set point).
Fig. 14. NAC against a step change in set point from pH=7 to 10

(solid line: response; dotted line: set point).
Fig. 15. RMPC against a step change in set point from pH=7 to 10

(solid line: response; dotted line: set point).
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Fig. 16. Zoom-in of the control actions.
Fig. 17. NAC against a sequence of step changes in set point (solid

line: response; dotted line: set point).
Fig. 18. RMPC against a sequence of step changes in set point (solid

line: response; dotted line: set point).
Fig. 19. MPC against a disturbance in the acidic stream flow rate

(solid line: response; dotted line: set point).
Fig. 20. NAC against a disturbance in the acidic stream flow rate

(solid line: response; dotted line: set point).
Fig. 21. RMPC against a disturbance in the acidic stream flow rate

(solid line: response; dotted line: set point).
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Fig. 19 shows that MPC results in an oscillatory sys-
tem. Fig. 20 tells us that NAC can resist the disturbance
after a long time of regulation. The excellence of RMPC
is clearly revealed in Fig. 21 where fast and stable con-
trol performance is observed.
5. Conclusion

Artificial neural network model predictive control has
been an active and important research topic because
model predictive control provides a promising and gen-
eral architecture to treat complex control problems and
artificial neural networks are a general approach for
industrial modeling. However, the incompleteness and
inaccuracy of artificial neural network models generally
exist and deteriorate the performance of the above con-
trol scheme. For highly nonlinear and/or sensitive pro-
cesses, the deterioration is so bad that stable control is
impossible. In solving this problem, regional knowledge
analysis is proposed in this study and applied to analyze
artificial neural network models in process control. New
input patterns, which mean extrapolation and, thus
unreliable prediction by an artificial neural network, can
be recognized from steep decrease in the probability
density function, which can be calculated from the
training data set. In case that the predictive control is
unable to achieve stable and smooth control, the con-
ventional model predictive control is modified by incor-
porating a parallel-running neural adaptive controller to
provide sufficient stability. A coordinator regulates the
weights of the outputs from the model predictive con-
troller and the neural adaptive controller to make the
final control decision. The regional knowledge index in
the coordinator determines the weights by considering
the present state of the controlled processes and the
model fitness to the present input pattern. The proposed
analysis method and the modified model predictive
control architecture are applied to a neutralization pro-
cess. Excellent control performance is observed in this
highly nonlinear and sensitive system.
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