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Most industrial systems are developed and improved more from experimental data than from
theoretical analysis. In this work, the robust design and optimal design of products and processes
are developed using an information-index-based artificial neural network response surface. The
structure and training policy of such an artificial neural network model are determined by the
cross-validation information index (CVI for short) developed in this work. In the case of noisy
and limited experimental data, this information index is particularly useful for finding the
number of nodes in the hidden layer and the weighting of the smoothness factor. The polymer
composite pultrusion process is studied. Simulation and experimental results show that this
novel approach is highly effective and promising.

Introduction

Product quality and stability are very important for
industrial processes. In most cases, it is very expensive
to derive a first principles model in process industries.
Product design and quality improvements for most
systems rely highly on experimental data and empirical
models. In the past decade, the artificial neural network
(ANN) approach has become widely used as a tool in
building empirical models.1,2 Previously, the authors1

extended the information theory concept to derive an
optimization approach for finding improved conditions
that maximize the product quality or other economic
objective function. Meanwhile, the ANN model can also
be steadily improved by using augmented training data
sets. However, the following problems remain to be
addressed: (1) The complexities of artificial neural
network models, i.e., the number of hidden layer nodes,
should depend more on the systems themselves than
on the quantity of experimental data. Few discussions
on this issue have been made. (2) Artificial neural
networks have been successfully demonstrated in mod-
eling process systems. However, they fail when the
experimental data are noisy and expensive to obtain.

The objective of this work is to tackle the above
problems. Unlike our previous work,1 this work focuses
on modeling for the cases of scarce and noisy data. The
current study also derives a novel index for solving this
problem. Some theoretical analysis of this index is
provided.

Artificial neural networks (ANNs) have been applied
to solve various problems in the chemical engineering
domain. Many researchers have concentrated on model
construction and used these models to predict process
behavior.3-5 Furthermore, some have derived dynamic
ANN models for the purpose of process control.6-9

Partial-knowledge-based ANN control is also under
thorough study.10-14 However, all of the above works
did not consider the appropriateness of the size of the

neural network models with or without prior knowledge.
On the other hand, the determination of ANN model
structures has been broadly studied in the field of
statistics. Akaike’s information criteria (AIC) is widely
implemented in determining the number of hidden layer
nodes.15,16 However, the approach is difficult when
training data are very noisy. Conditional AIC17 is
applicable in some cases but provides unsatisfactory
results in the case of limited and noisy data.

During product development stage, experimental data
might not only be noisy, but might also be quite limited
and expensive to obtain. Stoica18 proposed the use of
cross-validation to find model parameters in this situ-
ation. Galatsanos and Katsaggelos19 extended the ap-
proach to estimate the smoothness parameter, which
is also called the regularizing parameter in ANN
modeling.

The basic theme in increasing the generalization
capability of neural network model can be categorized
into the following three issues: (1) Model selection.15

In this work, we consider model selection as finding the
optimal number of hidden nodes. However, in some
other studies, model selection includes neuron-prun-
ing.20 (2) Regularization approach.21 A smoothness term
can be added to the neural training objective function.
This term is often a constraint on the model behavior
or penalty on weighting. (3) Early stopping.22 A common
phenomenon of neural training is that training errors
decrease monotonically as training increases, but gen-
eralization errors, reflecting the real error between the
model and system, reach a minimum and then increase.

More specifically, this study aims to incorporate the
following considerations into an ANN model for optimal/
robust design of a system with highly noisy and few
available data: (1) a reasonable number of hidden layer
nodes in an ANN model and (2) a penalized term added
to the training objective function of the ANN model to
reflect the fact that the response surface of a real system
is smooth.

In this work, we derive a novel information index to
determine the ANN model structure and smoothness* Corresponding author. E-mail: ssjang@che.nthu.edu.tw.
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parameter simultaneously. Simulations and experimen-
tal studies for a polymer composite pultrusion process
are implemented to verify the proposed approach.

Pultrusion is one of the most popular processes for
polymer composite manufacturing. Mathematical mod-
els for temperature and monomer concentration profiles
are well-established.23-25 As with many physical models,
these models are based on several ideal assumptions.
Furthermore, only models for product physical proper-
ties are of industrial interest. Some correlations for resin
and product physical properties are available.24,26

Armed with the above-mentioned models, we still
have difficulties in determining the optimal design for
a pultrusion process. In particular, the objective of the
experiment is to seek the optimal operating conditions
for maximizing the fracture strength, tensile strength,
impact strength and production capacity. During ex-
perimentation, we experienced high noise levels in
mechanical property measurements, even within the
same batch of production. The S/N ratio is extremely
poor and can be as low as 1. In addition, it takes 3 h to
run a batch of production and even longer to measure
the physical properties. In the considerable period, the
experimental data are still limited. With scarce and
noisy data, it is hard to obtain a good empirical model,
not to mention the optimal design. Therefore, we
consider the pultrusion process to be intractable, be-
cause it is not easy to model by first principles or by
any empirical method. According to our knowledge, this
is a very common phenomenon in the product-develop-
ment phase for industry. The challenges provided by the
pultrusion process motivate us to propose a novel
response surface methodology. Once a good empirical
model is obtained, optimal operating conditions can be
acquired using the previously proposed optimization
approach.1

Experimental design for product quality improvement
is traditionally based on a polynomial response sur-
face.27 The authors1 proposed the implementation of an
ANN response surface. Our previous study showed that
system noises could only be reconciled by model training
when they are small. However, this might not be the
case for many industrial systems. In high-noise systems,
the Taguchi method28 is widely used in the industry to
locate the operating conditions where the signal-to-noise
ratio (S/N) is maximized. However, implementation of
the Taguchi approach can only determine the robust
conditions at the predetermined levels. In this work,
CVI-based ANN response surfaces are constructed to
obtain the robust operating conditions in an evolution-
ary manner with precise values. The major contribu-
tions of this work can be itemized as follows: (1) A novel
information index is derived to determine the structure
and parameters of an empirical model, such as an ANN,
in the case that data are scarce and noisy. (2) The
concept of robust design, maximization of S/N ratio, is
experimentally solved using a response surface for the
first time. (3) The process design and robust design
problem of an intractable process, namely, the pultru-
sion process is solved using the proposed modeling
technique.

This paper is organized as follows. In the next section,
we derive a CVI-based ANN model whose structure and
smoothness factor are determined using a novel infor-
mation index that combines the concepts of cross-
validation and Akaike’s information criteria. In section
3, we discuss the distinction between robust design and

optimal design. Robust design means having a stable
product quality by finding the optimal operating condi-
tions that maximize the S/N ratio. On the other hand,
optimal product design is to find the operating condition,
which maximizes production objective function. In the
same section, robust design and optimal design prob-
lems are formulated and solved using the desired
response surface and iterative experimental data. The
mathematical model and experimental setup for the
pultrusion system are described in section 4. In section
5, three examples are presented to demonstrate the
application of the proposed methodology. The first
example, curve fitting of a quadratic function, shows the
usefulness of the proposed index in modeling a system
with limited and noisy data. The second and third
examples are the simulation and real experiment of a
pultrusion process that is considered to be extremely
intractable. The second example presents comparisons
of the proposed index and existing indices in determin-
ing the model structure and the resulting model capa-
bility. Then, we apply the proposed index to model a
real pultrusion process. The acquired ANN model is
subsequently used to find the optimal operating condi-
tions. Also robust design is conducted as the data are
very noisy. Finally, some concluding remarks are given
in section 6.

2. Development of the CVI-Based ANN Response
Surface

Consider a process system S that generates experi-
mental data with an input vector x ∈ RN, an unknown
disturbance vector z ∈ RP, and a system output (physical
properties of the product that can be measured) vector
y ∈ RM, such that

Assume that a set of experimental data Ω ) {(xi,yj i)|i
) 1, ..., Q}is available, where yj denotes the vector of
the measured physical properties. We denote a response
surface model for system S by

where ¥ ∈ RL represents parameters of the model and
w ∈ RK is a weighting vector for the nonlinear functions
in the model, such as the neurons’ weighting for an ANN
model.

2-1. Theoretical Background. Consider an ANN
model as shown in Figure 1. Assume that N input nodes
x ) (x1,x2,...,xN) and a hidden layer with H nodes are

Figure 1. Schematic plot of a single hidden layer neural network
model.

y ) S(x,z) (1)

ŷ ) RS(¥,w,x) (2)
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implemented; then the output signal from the hidden
layer with respect to an input signal, xj, can be derived
as

if one implements a hypertangent transfer function.
Herein, for simplicity, we only implement a single
hidden layer, but the results in this work can easily be
extended to multilayer ANN systems. It can be easily
shown that the mth output of the model is given by

We denote the following weightings of the model in eq
2 for an ANN model

Without the parameter set ¥ in eq 2, the common
training strategy for an ANN model in eqs 3 and 4 is to
solve the optimization problem

However, the above ANN model is usually trained by
a large training set such that the data noises can be
filtered out by eq 5. For many processes, especially those
in the product-development phase, the experimental
data are noisy and scarce. To take smoothness into
account, the objective function in eq 5 can be modified
as

where NG is the number of selected points in the
response surface. Note that the last term in eq 6 can be
analytically obtained from an ANN model, i.e.

where wi
o is the ith row of wo.

The determination of the parameter set ¥ ) {H,λ},
where H is the number of hidden nodes, is one of
objectives of this study.

Definition 2-1. Kullback-Leibler Information En-
tropy. Given a training set Ω ) {(xi,yj i)|i ) 1, ..., Q} and
a system S with a model RS as in eqs 1 and 2,
respectively, assume that all of the elements in Ω are
independent; then the Kullback-Leibler information
entropy is denoted by

Note that I ) 0 if S ) RS according to the above
definition.

Proposition 2-1. Akaike’s Information Criterion for
ANN Models. The optimal structure for S that mini-
mizes the Kullback-Leibler information entropy is
equivalent to minimizing

In the case of the ANN models in eqs 3 and 4

where ¥ is a set of parameters that is independent of
the weightings w among the neurons.

For the proof of proposition 2-1, see Tong.17

The advantage in AIC is that the dimensionality of
the model can be viewed as being comparable in order
of magnitude to the training error. However, as the size
of the training set is small, it is difficult to solve eq 6,
whose objective is to determine model structure and
smoothness parameters simultaneously.29 As in all
optimization problems, the two terms of eq 9 compete
with each other, and AIC is a compromise. In the case
of highly noisy and limited data, the solution of the
above equation would prefer a larger neural network
to minimize the first term. This is because the first term
in AIC could be greatly reduced by a larger neural
network (an increase in the second term in AIC), and
this would result in overfitting as indicated in the
simulation example of the pultrusion process. Moody20

proposed to implement cross-validation to ease this
problem.

The basic idea of using cross-validation is first to
separate the data set Ω into D independent subsets

Use one of the subsets as the testing set and the rest
as the training set. Rotate the choice of the testing set
to find min CV. Define the following cross-validation
index (CV); then the model parameters in eq 2 are
obtained by minimizing the index.

where ŷi(xj,¥) is the prediction of neural model using
Ω - Ωi as the training data set. However, this approach
is inappropriate when data are noisy and limited.30 The
problem is that size of the neural network needs to be
determined implicitly via the very small number valida-
tion data. This would lead to the same problem as AIC.
Nevertheless, the smoothness factor in eq 6 could be
properly estimated because of the nature of cross-
validation. Judging from the advantages and disadvan-
tages of AIC and CV, a novel information index, the
cross-validation information index, is derived. The
definition of the new index and the proof of its conver-

hi(x) ) tanh(∑
j ) 1

N

wij
hxj + bi

h)

wh ∈ RH × RN, bh ∈ RH (3)

ŷm ) ∑
i)1

H

wmi
o hi(x) + bm

o

wo ∈ RM × RH, bo ∈ RM (4)

w ) {wh,bh,wo,bo}

min
w

∑
i)1

Q

|ŷi - yj i|
2 (5)

J(w) ) ∑
i)1

Q

|ŷ(xi,w) - yj(xi)|2 + λ∑
i)1

NG

|
∂

2ŷ(xi)

∂xi
2

|2 (6)

∂
2ŷ(x)

∂(x)2
) ∑

i)1

m

whT -2

diag[csc h(whx + bh)]2
×

diag[tanh(whx + bh)] diag[wi
o] wh (7)

I(S,RS) ) ∫S(x) ln
RS(x)
S(x)

dx (8)

AIC ) -2 ln(maximized likelihood function) +

2(number of independently adjusted parameters)

min
¥

AIC(¥) ) ln[1

Q
∑
i)1

Q

|ŷ(xi,¥) - yj(xi)|
2] +

2

Q
[dim[¥,w] - 1] (9)

Ω1, Ω2, ..., ΩD, such that Ω )
Ω1 ∪ ... ∪ ΩD and ∀ i,j ∈ {1, ..., D},

i * j, Ωi ∩ Ωj ) 0

min
¥

CV(¥) ) ∑
i)1

D

∑
x∈Ωi

|ŷi(x,¥) - yj i(x)|2 (10)
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gence are shown in the next section. Subsequently, the
ANN response surface of a pultrusion process is deter-
mined using the new information index.

2-2. Cross-Validation Information Index (CVI).
Given the conditional likelihood function for subset Ωi,
i.e.

where Qi is the number of elements in Ωi. The total
conditional likelihood function for Ω is obtained as

Proposition 2-2. Cross-Validation Information Index.
Assume that the conditional likelihood function based
on cross-validation in eq 12 is maximized; then the
minimization of Kullback-Leibler information entropy
is equivalent to minimization of the following index

For the proof of proposition 2-2, see the Appendix.
The above index is termed the cross-validation infor-

mation index (CVI) in this work.
Proposition 2-3. Unbiased Estimation. Given a set

of experimental data Ω ) {(xi,yi)|i ) 1, ..., Q}, assume
that all data are independent observations or Markov-
dependent observations. Denote ¥* as the optimal
settings for Q f ∞ and ¥̂ as the solution suggested by
CVI when Q data are available; then

where M is a constant matrix.
For the proof of proposition 2-3, see the Appendix.
According to the above proposition, the solution

approaches the optimum when the amount of data in
the training set becomes larger and larger. When the
data set is large enough, the solutions obtained by CVI,
AIC, and CV should be the same.18,31 However, the
superiority of the CVI is the inclusion of a cross-
validation concept into the AIC.

Proposition 2-4. The Effect of Cross-Validation. Given
a set of experimental data Ω ) {(xi,yi)|i ) 1, ..., Q},
denote ¥̂D as the solution suggested by CVI when Q data
are available and divided into D subsets for CVI
computation; then

For the proof of proposition 2-4, see the Appendix.

The above proposition suggests that dividing a train-
ing set into more training subsets makes convergence
to the optimum faster. In other words, large D in eq 13
is desirable. In reality, however, with a given training
set Ω, D, and λ, the evaluation of a CVI needs to train
D times of sub-ANN models. Therefore, too large a value
of D might become infeasible for finding an optimal
setting for ¥.

It should be noted that the new information index in
eq 13 is a combination of AIC in eq 9 and CV in eq 10.
CVI increases the number of hidden nodes much more
conservatively than CV and AIC as the CVI considers
cross-validation error and model degrees of freedom
simultaneously. The overfitting problem can be avoided.

3. Robust Design and Optimal Design Using the
CVI-Based ANN Model

3-1. Robust Design Using CVI-Based Model.
Taguchi32 proposes that robust design of a product
involves finding operating conditions for a process such
that the ratio of the product quality index q2 (or signal,
S) to the quality variance σ2 (or noise, N) is maximized.
However, the Taguchi approach can only determine the
optimum at predetermined levels. Therefore, very often,
it only reaches the local optimum. This work imple-
ments the response surface obtained in the last section
to find the global optimum of the robust design in a
feasible region because the suggested operating levels
are not limited in a predetermined way.

Consider the process system in eq 1 and a training
set Ω ) {(xi,yi)|i ) 1, ..., Q}, where xi is the design
variable vector in experimental design problems and yi
is the measured physical property vector. To understand
the behavior of the plant noises, each experimental
observation (xi, yi) is to be repeated R times. Therefore,
the mean, Eyi, and variance, σ2, for each product
property, yi, can be estimated, where E is the expecta-
tion operator. In many cases, it is desirable to define
the following product quality index as a function of the
mean of the product properties

where q is a scalar. Substituting qi for yi, we obtain

With the above training set, we can obtain a product
quality response surface function as proposed in the
previous section, i.e., the following CVI-based ANN
model can be obtained by solving eqs 6 and 13 iteratively

With the same procedure, the signal-to-noise ratio
response (S/N ratio) surface

can also be obtained. For robust design,27 the signal-
to-noise ratio (S/N) should be maximized as follows

It should be noted that the solution of optimization for

Li(x1,x2,...,xQi
) ) ( 1

2πσ2)-Qi/2

exp[-
1

2πσ2
∑
i)1

Qi

(ŷ(xi) -

yj(xi))
2] (11)

L ) ∏
i)1

D

Li ) ( 1

2πσ2)-Q/2

exp[-
1

2πσ2
∑
i)1

D

∑
xi∈Ωi

(y(xi) -

ŷ(xi))
2] (12)

min
¥

CVI(¥) ) ln(1

Q
∑
i)1

D

∑
x∈Ωi

|ŷi(x,¥) - yj i(x)|2) +

2

Q
[dim(¥,w) - 1] (13)

¥̂ - ¥* ≈ 1
xQ

N(0,M) (14)

|¥̂D - ¥*| ) O( 1
xDxQ) as Q f ∞ (15)

q ) f(Eyj) (16)

Ω ) {(xi,qi)|i ) 1, ..., Q}

q̂ ) ANNq(¥,w,x) (17)

q̂2/σq
2 ) ANNq2/σq

2(¥,w,x) (18)

max
x

log10 q̂2/σq
2

s.t. q̂2/σq2 ) ANNq2/σq
2(¥,w,x) (19)
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the robust design in eq 19 is nontrivial because the
response surface is usually nonconvex with multiple
optima. The issues under such conditions have been
thoroughly discussed in the authors’ previous work.1 We
suggested an approach based on random search and
information theory. In that approach, the response
surface is investigated to find all probable optima. These
optima are suggested as new experiments to be per-
formed in the next run.

Figure 2 depicts the ANN response surface robust
design approach proposed by this work. It can be divided
into seven steps (steps 2-8 in Figure 2). Step 4 is the
model determination stage, which implements the CVI
approach discussed in section 2-2. Step 5 is the
construction of the response surface stage, which de-
termines the empirical model based on the training
data. Step 6 is the optimization stage, which determines
the possible optima based on the empirical model
established in step 5. For the details of step 6, the reader
is referred to Chen et al.1

3-2. Optimal Design Using the CVI-Based Model.
As for the traditional response surface product design,
the product quality q should be maximized. In most
cases, a more general objective function that takes

product cost, energy consumption, environment impact,
and operational safety into consideration, G(q,x) can be
defined. The optimal design of a product or process can
be formulated as

The methodology for solving eq 20 is the same as for
the robust design problem in the previous section. If only
the product quality objective is considered, then Ĝ can
be replaced by q̂. The efficiency of the optimization
approach is highly improved, and the number of experi-
ments is hence dramatically reduced, as shown in the
next section and example 5-3.

4. The Pultrusion Process

Pultrusion is one of the most popular processes for
manufacturing high-performance composite products.
The flowchart in Figure 3 depicts a general pultrusion
process. Fibers are stored and arranged in a Roving
shelf. A puller is implemented to control the tension of
the fibers to pass through a fiber guide and an impreg-
nation tank; then the resin impregnated fibers go
through the die. The die is heated, and the temperature
is controlled. The products go through the puller, which
also controls the pulling speed. A cutter is used to cut
the products into a desired length. The mathematical
models for temperature and composition profiles of this
process have been well studied and are presented in
section 4-1; a similar experimental setup is described
in section 4-2.

4-1. Mathematical Model. Han,33 Batch,34 and
Ma,24 as well as their co-workers, have established the
complete mathematical models for a pultrusion system
to describe the monomer conversion and temperature
distribution. In this section, the mathematical model
derived by Han et al.33 is briefly described. Note that a
similar model22 is also derived by the authors. The
numerical specifications of simulated process are listed
in Table 1. Figure 4 shows the Cartesian-coordinate
model for a heating metal die.

where V is the pulling speed, CA denotes the concentra-
tion of resin, and RA is the reaction rate of curing. Define
the degree of curing as

Then we have

where ∆HR is the reaction heat; F is the bulk density; k
is the bulk thermal conductivity; and CA0 is the initial

Figure 2. Flowchart of the ANN response surface experimental
design approach.

max
x

Ĝ(q̂,x)

s.t. q̂ ) ANNq(¥,w,x) (20)

(i) Continuity equation

V
∂CA

∂z
) RA (21)

R ) (CA0 - CA)/CA0

dR
dt

) V∂R
∂z

) - V
CA0

∂CA

∂z
(22)

(ii) Energy balance equation

FcpV
∂T
∂z

) ∂
2kT
∂x2

+ RA∆HR (23)
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concentration of reactive resin at the entrance, i.e., at z
) 0.

where

The boundary conditions for eqs 20 and 22 can be
listed as

4-2. Experimental Setup. In the laboratory, we
used a bench-scale pultrusion system, Pulstar 810,
Pultrusion Technology Incorp., as shown in Figure 3.
The machine consists of two heating zones and two sets
of pultrusion die with dimensions of 820 × 12.7 × 3.19
mm and 820 × 12.7 × 2.08 mm (length × width ×
thickness). The physical properties of the glass fiber and
resin are listed in Table 2. In this system, two heating
zones (T1 and T2), the temperatures of the mode, and
the velocity (V) of the puller are controlled online.
Therefore, three inputs, or designed variables, in eq 1
are available: x ) (T1,T2,V)T. Three physical properties
of the product are also measured. Fracture strength (F)

Figure 3. Schematic plot of the experimental setup.

Figure 4. Coordinate and boundary conditions of the mathematical model for the heating metal die.

Table 1. Constants Used in Simulated Pultrusion
Process

W, die width (cm) 1.27
L, die length (cm) 152.4
feed temperature (K) 333
fiber weight percentage 83
uncured polyester density (g/cm3) 1.1
uncured polyester specific heat

(cal g-1 K-1)
0.45

uncured polyester thermal
conductivity (cal cm-1 s-1 K-1)

4.05 × 10-4

cured polyester density (g/cm3) 1.2
cured polyester specific heat

(cal g-1 K-1)
0.45

cured polyester thermal
conductivity (cal cm-1 s-1 K-1)

1.54 × 10-4 + 9.46 × 10-7T

k10 (1/min) 3.412 × 1014

E1 (kcal/mol) 25.57
k20(1/min) 5.167 × 1010

E2(kcal/mol) 17.93
m, order of reaction rate in eq 23 0.58
n, order of reaction rate in eq 23 1.42
∆HR, reaction heat (J/g) 200

Table 2. Physical Properties of Glass Fiber and Resin
Used in Experiments

(1) E-glass roving produced by PPG Industries, Inc.,
Pittsburgh, PA

density ) 2.54 cm3/g
fiber diamenter ) 13 µm
tensile strength ) 2-3 × 105

elastic modulus ) 1.05 × 107

(2) PF-650 resole-type phenolic resin produced by
Chunag-Tsung Co., Taiwan

viscosity ) 150-250 mPa s
density (25 °C) ) 1.1254 cm3/g

x ) L, x ) -L, T ) T(z)

z ) 0, T ) Ti

(iii) Reaction rate

dR
dt

) (k1 + k2Rm)(1 - R)n (24)

k1 ) k10 exp(-E1/RT) and k2 ) k20 exp(-E2/RT)
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is measured using a universal testing machine (Instron
Co.) following the specification of ASTM D-790. The
sample dimensions are 12.6 × 1.21 × 0.29 cm. The span
is 5 cm, and the crosshead speed is 2 mm/min. Tensile
strength (T) is measured using an Instron-4468 instru-
ment following the specification of ASTM D-3039. The
sample dimensions are 25.6 × 1.21 × 0.29 cm, and the
crosshead speed is 2.5 mm/min. The notched Irod impact
strength (I) is measured using a TMI-43-1 machine
(Testing Machine Inc.) according to ASTM D-256. The
sample dimensions are 6.3 × 1.21 × 0.29 cm. The weight
of the pendulum is 10 lb. In summary, the output
variables in eq 1 are y ) (T,F,I)T.

5. Results

In this section, we present the simulations and
experiments of the pultrusion process described in the
previous sections, as well as a simple curve fitting of a
quadratic function to justify the theoretical work of the
proposed cross-validation information index (CVI).

5-1. Curve Fitting of a Quadratic Function. The
Effect of Data Dividing and Noise Size on CVI.
According to proposition 2-4, increasing the number of
divisions of the training set is desirable. However, the
optimization problem in eq 13 needs to derive D sets of
ANN submodels in every iteration. On the other hand,
if the number of the experiments (size of the training
set) increases, the solution of CVI would approach the
exact solution. As mentioned before, the plant experi-
ments are expensive. This example is to demonstrate
the effects of divisions of the training set and size of
noise in the training data to find appropriate model
parameters using eq 13. Consider the quadratic function

where ε ∈ N(0,2). Assume that 49 uniformly spaced data

are sampled, and optimal CVIs in eq 13 are solved in
the cases of D ) 2-6. Notably, the subdivision of the
above data set for cross-validation is performed ran-
domly. Another separate testing set with a size of 961
is generated. Table 3 shows that D ) 5 gives about the
same results as D ) 6 in terms of smoothness factor
value, number of hidden nodes, and sum of absolute
errors. The number of ANN submodels to be trained
dramatically increases if D increases. Figure 5 compares
the model predictions by optimal ANN structures based
on D ) 2 and 5 to the real curves. It is clear that, for
the lower division of the training set, i.e., D ) 2, the
model is completely wrong.

Table 4 shows that, in the case of higher noise
magnitudes, this approach proposes higher smoothness
factors. For the three cases, ε ∈ N(0,2), ε ∈ N(0,5), and
ε ∈ N(0,8) in Table 4, the minimization of CVI proposed
λ ) 0.0651, 0.07, and 0.09, respectively, for a 49-data-
point training set. The number of hidden nodes remains
the same for all three cases. However, if the magnitude

Figure 5. Comparison of the model behavior (solid lines) and the real quadratic function (dashed lines) based on CVI with 49 data
points.

q(x1,x2) ) x1
2 + x2

2 + ε

Table 3. Effect of Subset Number on the Curving Fitting
of a Quadratic Function

D λ
hidden
nodes

sum of
absolute errors

number of neural
network training

iterations

2 0.0051 2 2500.3 84
3 0.0651 3 600.8 120
4 0.0575 3 498.7 176
5 0.0308 3 485.6 215
6 0.0341 3 473.8 312

Table 4. Effect of Noise Magnitude on the Curving
Fitting of a Quadratic Function

noise
distribution λ

hidden
nodes

sum of
absolute errors

N(0,2) 0.0651 3 485.6
N(0,5) 0.07 3 1920.3
N(0,8) 0.09 3 4150.4
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of noise becomes too high, i.e., ε ∈ N(0,8), the ANN
model fails as shown in Figure 6. Increasing the number
of experiments can solve this problem.

5-2. Simulation Study of the Pultrusion Pro-
cess. The Study of Model Capability of CVI-Based
ANN. Consider the mathematical model given in
section 4-1 and assume that the model temperatures
and pulling velocity are set at 353 K, 353 K, and 20 cm/
s, respectively; then the partial differential equations
21 and 23 can be solved. In this work, the finite-
difference technique suggested by both Han et al.33 and
Ma et al.24 is implemented to solve the coupled PDEs.
Figure 7 gives the extent of curing in the die. The curing
profile R(x,z) in Figure 7 is modeled by using the CVI-
based ANN developed in section 2, using 121 simulation
points that are uniformly distributed and corrupted by
normally distributed N(0,0.02) noises. Figure 8 shows
CVI values for different cases of ANN models for R(x,z)
with varying numbers of hidden layer nodes and smooth-
ness factors. The optimal settings of H and λ in eq 6
are found to be 4 and 0.01, respectively, as shown in
Figure 8. A set of testing data with a size of 1331 points

is used to test the accuracy of the acquired model. Figure
9 shows the total absolute errors between the prediction
and testing data using ANN models with different
numbers of hidden nodes. Figure 9 also compares the
performances of the ANN models with and without
smoothness factors. It is obvious that the ANN models
with large nnumbers of hidden layer nodes are overfit-
ted because of the effect of noises and limited data. The
results indicate that the ANN model structure and
smoothness factor are determined by CVI appropriately.
Table 5 compares the optimal model structures deter-
mined by all existing techniques and our proposed
index. CVI is superior to all other approaches in the
cases of Q ) 121 and 289. In the case of Q ) 441,
CVI and all other approaches give the same model
paraemters because the number of experiments is
sufficient for a smooth regression. It should be noted
that the optimal smoothing factor λ based on CVI
decreases to zero as the size of the training set increases.
This is consistent with the theoretical analyses in
section 2.

5-3. Experimental Study. Consider the experi-
ments of the pultrusion process described in section
4-2; the maximum tensile strength, fracture strength,

Figure 6. Comparison of the model behavior (solid lines) and the real quadratic function (dashed lines) based on data with different
noise magnitude.

Figure 7. Curing profiles in the simulated die and CVI-based
ANN model (solid lines, simulated data; dashed lines, ANN model).

Figure 8. Determination of H and λ by CVI.
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and impact strength are sought. Therefore, we define
the product mechanical property objective as

where subscripts max and min denote, respectively, the
maximum and minimum obtainable values of product
quality in tensile strength, fracture strength, and
impact strength. In addition, the product capacity, i.e.,
speed of pulling, is also concerned. Consequently, the
overall production objective is formulated as

where 20 is used to scale up the magnitude of the above
mechanical property objective, q. In most industry cases,
an orthogonal array table or partial factorial design is
preferable. Here, for a thorough study, 27 independent
experiments were performed based on a full factorial
design, as shown in Table 6. For each experiment, five
samples are cut from the products and the physical
properties (T, F, I) were measured. The box plots for
these 27 experiments are shown in Figure 10a-10c. The
noises of these product quality measurements are very
large.

Table 7 shows the results of conducting an ANOVA
(analysis of variance) for the product quality. All factors
(T1, T2, and V) and their interaction terms have strong
effects27 (low P values) on product quality. The system

is highly nonlinear. A traditional statistical cubic func-
tion model

is obtained by regressing the 27 experimental data
points. This model is, in turn, implemented to find
optimal operating conditions, as shown in Table 8. The
best product quality, G, in Table 8 is 48.67, which is
smaller than the values obtained in at least five runs
in the initial factorial design shown in Table 6. The
result shows that the above model fails to find better
operating conditions.

A normal probability plot for the signal-to-noise ratio
(S/N), shown in Figure 11, indicates that the S/N ratio
is clearly related to the operating conditions. In Figure
11, strong effects of all factors and their interactions
on the S/N ratio are indicated by their significant
deviations from the dashed line.27 Therefore, in terms
of the S/N ratio, the system is also highly nonlinear.

Model Capability. Using the results of the 27 experi-
ments, the means of the three physical properties are
calculated, and the response surface of the product
quality objective q̂ is constructed by solving the double
optimization problem in eqs 6 and 13. The optimal
number of the nodes, H, in the hidden layer is 4, and
the smoothness factor (λ ) 0.03) is also found. Figure
12a shows the contour plot of the CVI-based ANN model
for the product quality by only selecting the effects of
variables T1 and T2. This contour plot shows that at
least two local optima exist in the operating ranges of
T1 and T2. Hence, this system has multiple optima and
is nonconvex. However, if one implements an ANN
model with the same structure as the previous model
without a smoothness factor, then the contour plot given

Figure 9. Sum of absolute errors between the model predictions
and testing data using different model structures with/without an
optimal smoothness factor.

Table 5. Optimal ANN Structure Determined by Various
Statistical Indices in the Simulated Pultrusion Process

number of
data points indices

number of
hidden nodes λ

sum of
absolute errors

121 CVI 4 0.01 27.3451
cross-validation 6 0.01 32.5869
AIC 6 0.005 31.9238
conditional AIC 4 0.015 33.9053

289 CVI 5 0.0075 22.0165
cross-validation 6 0.0025 24.1933
AIC 6 0.001 24.8509
conditional AIC 6 0.012 23.6843

441 CVI 6 0.00 18.7088
cross-validation 6 0.00 18.7088
AIC 6 0.00 18.7088
conditional AIC 6 0.00 18.7088

q )
T - Tmin

Tmax - Tmin
+

F - Fmin

Fmax - Fmin
+

I - Imin

Imax - Imin
(25)

max
T1,T2,V

G ) V + 20q̂

s.t. q̂ ) ANNq(T1,T2,V) (26)

Table 6. Results of Initial Full Factorial Design for
Experimental Pultrusion Process

T1 (°C) T2 (°C) V (cm/min) E(q) log10(q2/σ2) σ2 G

1 200 200 10 1.060 1.352 0.050 31.2
2 200 200 20 0.220 -0.530 0.164 24.4
3 200 200 30 0.298 0.907 0.011 35.8
4 200 220 10 1.555 1.605 0.060 41.2
5 200 220 20 0.926 1.571 0.023 38.6
6 200 220 30 0.865 1.833 0.011 47.2
7 200 240 10 1.961 1.052 0.341 44.4
8 200 240 20 1.178 1.426 0.052 43.4
9 200 240 30 0.963 1.853 0.013 49.4

10 220 200 10 1.368 1.841 0.027 37.4
11 220 200 20 1.483 1.643 0.050 49.6
12 220 200 30 0.729 1.612 0.013 44.6
13 220 220 10 1.844 1.841 0.049 46.8
14 220 220 20 1.074 2.108 0.009 41.4
15 220 220 30 0.602 0.957 0.040 42
16 220 240 10 1.705 1.314 0.141 44.2
17 220 240 20 1.270 1.408 0.063 45.2
18 220 240 30 0.973 2.073 0.008 49.4
19 240 200 10 1.429 1.328 0.096 36
20 240 200 20 0.940 1.107 0.069 38.8
21 240 200 30 1.025 1.590 0.027 50.4
22 240 220 10 2.038 1.780 0.069 48.6
23 240 220 20 0.796 1.459 0.022 36
24 240 220 30 0.711 0.911 0.062 44.2
25 240 240 10 1.975 1.792 0.063 51.4
26 240 240 20 0.528 0.998 0.028 30.6
27 240 240 30 0.774 0.552 0.168 44.4

q̂ ) - 21.32 + 0.16025T1 + 0.03483T2 - 1.6311V +
0.00022T1T2 + 0.007T2V + 0.0072T1V -

0.000452T1
2 - 0.000149T2

2 + 0.00257V2 - 3.406 ×
10-5T1T2V (27)
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in Figure 12b is obtained. The contour plot becomes very
irregular and impossible to implement.

For the purpose of comparison, AIC and CV were also
implemented to determine an ANN model with a
smoothing term using the 27 training data points in
Table 6. The number of hidden layer nodes (H) is 5 for
AIC and 5 for CV, while the smoothing factor (λ) is 0.01
for AIC and for CV (compared with H ) 4 and λ ) 0.03
for CVI). The first four experimental data points in run
I of Table 9 are used as the testing data. The testing
errors are shown in Figure 13. The results show that
the CVI-based model is much more reliable than the
AIC- and CV-based models.

Optima Design. Using the acquired CVI-based ANN
quality model, the optimization algorithm described in
Figure 2 is performed. The optimization problem in eq
26 is solved. Our information theory and random search
algorithm1 suggests several new experiments in each
run. The results of three runs of the optimization
procedures for product design are documented in Table
9. In this particular system, as indicated by Figure 12a,
two local optima can be found for the objective function
denoted by eq 26. The bold rows of Table 9 record the
evolutionary history of two optimal conditions through
three iterations of the proposed optimization procedure.
The suggested experimental conditions converge to the
optima. It should be noted that our optimization ap-

Figure 10. Product span of 27 independent experimental runs:
(a) fracture strength, (b) impact strength, (c) tensile strength.

Table 7. ANOVA Analysis for Quality Variable to the
Design Variables

source of variation SS df MS Fo P value

T1 (A) 1.1484 2 0.5742 9.2829 0.0002
T2 (B) 2.2211 2 1.1105 17.9543 0
V (C) 20.1164 2 10.0582 162.6128 0
AB 3.6081 4 0.902 14.5831 0
AC 2.2221 4 0.5555 8.9814 0
BC 1.457 4 0.3642 5.8887 0.0004
ABC 1.7101 8 0.2138 3.456 0.0036
error 6.6802 108 0.0619
total 39.1633 134

Table 8. Results of Traditional Experimental Design
with a Second-Order Polynomial Model

T1
(°C)

T2
(°C)

V
(cm/min) q

q
(predicted)

error
(%) G

I 203.12 240 30 0.933534 1.048 12.26158 48.67068

Figure 11. Normal probability plot of operating condition effects
on S/N ratio.

Table 9. Results of ANN Experimental Design with
Smooth Training Neural Model

run
T1

(°C)
T2

(°C)
V

(cm/min) q
q

(predicted)
error
(%) G

I 1 209.1 231.46 12.05 1.99 1.88 -5.68 51.85
2 239.27 236.55 11.00 1.89 1.84 -2.7 48.8
3 228.5 226.79 29.53 0.9 0.91 1.33 47.53
4 217.24 208.96 20.84 1.24 1.2 -3.38 45.64

II 1 210.24 239.04 14.25 1.900 1.82 -4.195 52.24
2 231.09 239.5 13.3 1.848 1.78 -3.684 50.26
3 231.18 228.57 12.73 1.788 1.66 -7.146 48.49
4 207.43 229.49 26.62 1.009 1.14 13.02 46.79
5 230.29 202.62 21.49 1.068 1.14 6.732 42.85
6 210.88 210.57 26.99 0.974 1.11 13.97 46.47

III 1 208.27 239.25 14.55 2.044 1.87 -8.525 55.44
2 229.07 237.26 12.23 1.863 1.86 -0.139 49.48
3 211.74 221.19 13.72 1.811 1.87 3.261 49.97
4 213.8 216.1 28.89 0.929 1.07 15.208 47.46
5 225.54 207.16 28.22 0.962 1.07 11.237 47.46
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proach1 usually suggests more than one new condition
to the user. This is because of our random search
clustering approach. For details, the reader is referred
to Chen et al.1 That is why four to six experiments
including the two optima (the bold rows in Table 9) are
conducted in each run.

Table 10 shows the same case as Table 9. The only
difference is that we implement nonsmoothing ANN
model, as shown in Figure 12b. Moreover, the experi-
mental points suggested in runs 2 and 3 are still far
away from the final optimal operating conditions sug-
gested by the smoothing response surface approach. By
comparing Figure 12 and Tables 9 and 10, it is very
clear that the implementation of a CVI-based model
with the consideration of smoothness factor is highly
promising for finding the optimal operating conditions

in a highly noisy system with a limited number of
experimental data.

Robust Design. Assume that it is also desirable to find
a robust operating condition (high S/N ratio in eq 19)
for the same pultrusion process. Using the experimental
results shown in Table 6, a CVI-based ANN model with
a smoothing term can be derived. Subsequently, the
robust design problem in eq 19 can be solved as the
previous case, i.e., by replacing the objective function
G in eq 26 by q̂2/σ2. Table 11 shows that robust operating
conditions can be found. Comparing the optimal result
with the original 27 experiments in Table 6, this robust
design approach significantly improves the S/N ratio
from the full factorial design results. It should be noted
that the original Taguchi method can only find the best
operating condition from the above 27 data points.
According to Table 11, two optima, items 1 and 2 in the
third batch, are listed. One is at T1 ) 229, T2 ) 232,
and V ) 17; the other is at T1 ) 214, T2 ) 238, and V
) 28. In the first case, the product quality is good, and
the variance is comparatively large than it is in the
second case. In the second case, the product quality is
not as good as in the first case, but the product variance
is very low. This is because, at high temperature, the
curing of the product in the die is more complete.
However, because of the effect of the curing, the high-
temperature products become not as uniform in flow as
the low-temperature products. There exists a compro-
mise between the two cases. Finally, it should be noted
that the proposed approach can handle multiple-optima
problems that cannot be treated by the traditional
response surface method (RSM).

6. Conclusion

A novel approach to determining the model structure
and regression parameters of an ANN response surface
model is developed. The novel information index (cross-
validation information index) is a combination of the

Table 10. Results of ANN Experimental Design without Smooth Training Neural Model

run T1 (°C) T2 (°C) V (cm/min) q q (predicted) error (%) V + 20q

I 1 230.35 208.87 15.82 1.5475 1.76 13.73179 46.77001
2 229.57 222.06 19.56 1.537289 0.83 -46.0088 50.30577
3 208.01 230.77 16.24 1.308228 1.71 30.71115 42.40456
4 201.31 219.51 16.55 1.847937 1.76 -4.75866 53.50874
5 211.46 211.42 16.72 0.825945 1.73 109.4571 33.2389

II 1 228.14 229.44 17.8 1.34273 1.16 -13.6088 44.6546
2 205.37 232.41 21.44 1.165695 4.47 283.4621 44.75391
3 212.14 209.66 20.3 1.156539 2.93 153.342 43.43078

III 1 234.93 234.07 14.27 1.416319 2.29 61.68677 42.59638
2 210.45 232.18 21.44 1.33883 1.62 21.00119 48.21657
3 225.17 212.24 19.9 1.515493 0.99 -34.6747 50.20986

Figure 12. Artificial neural network model response surfaces
determined by experiments: (a) ANN model with smooth training,
(b) ANN model without smooth training.

Figure 13. Comparison of the testing errors of three ANN models
whose structures are determined by CVI, AIC, and CV.
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Akaike information index and cross-validation. The
theoretical analysis shows that the new index converges
rapidly when a limited number of noisy experimental
data are available. This approach is, in turn, imple-
mented to find the optimal/robust design solution of a
pultrusion process. Both the simulation and the experi-
mental works show that the proposed approach is very
promising.
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Appendix

Proof of Proposition 2-2. The following proof is a
natural extension from AIC except that the likelihood
function is replaced by the conditional likelihood func-
tion in eq 12. For details, the reader is referred to
Tong.17 Given the data set x of Q observations, the
prediction is realized by g(y|x), and the true distribution
of y is noted as f(y). The Kullback-Leibler information
entropy can be solved as

The goodness of the prediction of a future observation
is defined as ExEy ln g(y|x). Suppose that x and y are
independent and that g(y|x) ) g(y|¥) is a distribution
specified by a set of parameters ¥. The conditional
logarithm of the likelihood of the data-dependent model
g(y|x) is defined by

where C ) dim[¥] is a constant correction term such
that

(1) Suppose that the optimal setting of ¥ is ¥* and
that ¥̂ is the conditional maximum likelihood estimation
when dim[¥] is previously determined; then the condi-
tional likelihood ratio statistic has the asymptotic xp

2

distribution.

(2) By expanding 2 ln g(y|¥̂) in the neighborhood of 2
ln g(y|¥*) and ignoring the higher-order terms, we have

This completes the proof of proposition 2-3.
Note that

Combining eqs A-3 and A-5, we have

and

We can thus conclude that C ) - p.
Now, because the conditional likelihood function can

be defined as

Table 11. Results of Robust Experimental Design

run T1 (°C) T2 (°C) V (cm/min) q var
log10(q2/σ2)
(predicted) error (%)

I 1 228.53 232.69 17.49 2.1223 0.0072 2.79639 -3.3988
(2.7012)

2 211.61 236.71 28.95 1.2378 0.0057 2.4294 11.0942
(2.699)

3 227.79 209.57 12.02 1.5476 0.0325 1.8674 -6.8137
(1.7402)

4 201.41 218.86 13.30 1.3412 0.0088 2.3105 11.7116
(2.5811)

II 1 230.18 231.41 15.81 1.7611 0.0094 2.5184 6.9998
(2.6947)

2 213.15 235.95 28 1.4929 0.0046 2.6853 1.7011
(2.731)

3 227.02 210.02 12.29 1.5492 0.0553 1.6375 11.0377
(1.8182)

4 201.28 213.59 12 1.2501 0.0055 2.4535 -2.5399
(2.3912)

III 1 229.49 232.19 17.13 1.7802 0.0081 2.5925 -1.2419
(2.5603)

2 213.82 237.58 27.97 1.4395 0.0039 2.7254 -2.1449
(2.6669)

3 228.28 210.41 13.38 1.5490 0.0445 1.7317 -3.1131
(1.6778)

4 201.15 214.3 12.04 1.2095 0.0087 2.2257 9.7239
(2.4421)

Ex[ln g(y|¥) + C] ) ExEy ln g(y|x) (A-2)

lim
Qf∞

2 ln g(x|¥*) - 2 ln g(x|¥̂) ≈ øp
2,

p ) dim[¥,w] - 1 (A-3)

xQ(¥̂ - ¥*)T ≈ N(0,I¥*
-1), as Q f ∞

I¥* ) - 1
Q

Ey[∂2¥*
∂¥2 ] (A-4)

2Ey[ln g(y|¥*) - 2 ln g(y|¥̂)] )

xQ(¥̂ - ¥*)TI¥*xQ(¥̂ - ¥*)] ≈ øp
2

2Ex[2 ln g(y|¥̂) - ln g(y|¥*)] ) p

2ExEy[ln g(y|¥*) - 2 ln g(y|¥̂)] ) p

I(f,g) ) - ∫f(y) ln
g(y|x)
f(y)

dy )

- ∫ f(y)
g(y|x)

ln(g(y|x)
f(y) ) g(y|x) dy

(A-1)

) ∫f(y) ln g(y|x) dy - ∫f(y) ln f(y) dy

) Ey ln g(y|x) - constants

ln g(y|¥) + C
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where Ni is the number of elements in Ωi, the CVI can
be written as

Rearranging the above equation and neglecting con-
stants, we obtain

Proof of Proposition 2-3. Because Ω ) {(xi,yi)|i )
1, ..., Q} is a set of Markov-dependent observations, the
joint probability density function of {x1,...,xq} is given
by

Suppose that θ* is the optimal setting; then

where dθ denotes the operator of the first derivatives
with respect of θ. The usual Taylor expansion of CVI(θ)
about θ* would be

If the last residual term in the above equation is
neglected, then

According to Martingale theory35

where V is a constant matrix in probability. This simply
requires ergodicity, and the stationarity of Ω ) {(xi,yi)|i
) 1, ..., Q} is obtained. By the Martingale central limit
theorem17

where W and M are constant matrices.

Proof of Proposition 2-4.

where m is an integer such that m ) [Q/D] ([x] denotes
the largest integer not greater than x).

Denote the residual, (ŷ - yj), as ε(x,θ). Then, we can
write a Taylor expansion as

where

Because (E denotes expectation)

it follows from eq A that
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ε
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Q
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(A-8)

V(θ) ) ∑
x∈Ω-Ωi

1

Q
||ŷi(x,θ) - yj i(x,θ)||2 +

2

Q
p

1

m
∑
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ε(x,θ*)dθε(x,θ*) ) E ∑
x∈Ωi

ε(x,θ*)dθε(x,θ*) +

O( 1

xm)
(A-9)

) 
1

Q
∑
x∈Ω

ε(x,θ*)dθε(x,θ*) +

O( 1
xQ) + O( 1

xm)

|θ̂D - θ*| ) O( 1

Dxm) ) O( 1
xDxQ)
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