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This work presents a novel systematic approach to acquire good-quality plant data that can be
efficiently used to build a complete dynamic empirical model along with the use of partial plant
knowledge. A generalized Delaunay triangulation scheme is then implemented to find feasible
operating boundaries that may be nonconvex on the basis of the existing plant data. The Akaike
information index is adopted to assess partial plant knowledge as well as noisy plant data. The
information free energy is calculated for acquisition of good-quality new plant data that will
improve the dynamic model. The new experimental data suggested by the information analysis,
together with the previous data and prior plant knowledge, are used to train a new dynamic
empirical model. Multivariable model predictive control for a high-purity distillation column
using the acquired model based on the proposed approach is also studied. Comparing with PRBS
and RAS schemes, the proposed approach outperforms the rest.

1. Introduction

Model predictive control (MPC) is becoming a stan-
dard recently in the chemical industries. Tremendous
progress has been made theoretically1 and practically.2
However, only linear MPC is available in the process
industry, although many researchers have investigated
the possibility of implementing a nonlinear empirical
model, such as an artificial neural network (ANN)
model.3-5 This study tries to address the following
difficulties caused due to implementing nonlinear MPC.

In the case of a multivariable system, too many data
are required to train a “complete” ANN model. Unfor-
tunately, no systematic approach exists to develop a
“complete” nonlinear model.

It is undesirable for an empirical model to perform
extrapolation, and also there is no guarantee that an
event of the on-line model prediction always falls into
the region described by the training set.

On-line measurements are contaminated by signal
noise. When a training set is not large enough, the
prediction capability of an empirical model would be
impaired by noise-contaminated data.

As partial plant knowledge is available, it should be
possible to include partial plant knowledge with plant
data together so that the number of needed experiments
can substantially be reduced.

In the past decade, many researchers have studied
to incorporate plant knowledge into a black box model.
Thompson and Kramer6 combine a physical model in
parallel with a radial based neural network to enhance
the extrapolation ability of the empirical model. Psi-

chogios and Ungar7 implement an ANN in series with
a physical model to estimate the parameters of the first-
principle model. The author8 applies a physical model
to extend the domain of a training set. The incorporation
of partial plant knowledge into a black box model is
termed as a “gray box” model. Van Can9,10 has applied
gray box models in chemical process systems. However,
all these works utilize a first-principle model that is
usually too expensive and nearly impossible to obtain
in industrial scale processes.

Akaike information was originally proposed as a
regression index.11,12 The minimization of Akaike in-
formation criteria (AIC) has been widely implemented
on model diagnosis and model structure selection.13,14

The physical meaning of AIC is a compromise between
regression error and the degree of freedom of a regres-
sion model. Conditional Akaike information criteria
(CAIC) are used in this work to determine the optimal
combination of operating data and several types of prior
knowledge. A neural network model that trains with
these data together is derived. We also consider that
the data obtained from different sources should be
weighted differently. These weights can be determined
by optimizing the CAIC.

Black box models, for example, ANN models, are
usually derived using plant data. Since ANN models are
parameter-rich, they may be overfitted if a training data
set is not large enough. When applied to chemical
processes, the prediction capability of ANN models
would be further impaired by the noise-contaminated
plant data. In other words, overfitting of the models
becomes much more severe when training data are
noisy. Dong and McAvoy15 developed a principal neural
network, and Johansen16 also derived a spline regres-
sion to treat noisy data. In this work, we introduced the
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idea of smoothing plant data to ANN model training to
ease the noise problem.

On-line applications of black box models must ensure
that the models do not perform extrapolation. In this
work, we term the “completeness” of a model as an
empirical model that always performs interpolation
during predicting any new event. Note that interpola-
tion/extrapolation are defined as points lying inside/
outside the nonconvex hull throughout the paper. If a
point lies inside the nonconvex hull of a data set, the
model prediction at this point is a result of interpolation.
Until now, very limited works have focused on this
issue. Raju and Cooney17 proposed to improve the model
by conducting new experiments that are determined by
reviewing training set data. Our previous works18,19

proposed that the model should determine new experi-
ments to ensure the accuracy of its prediction by
investigating the total information free energy of the
training set. Assuming the convexity of the operation
boundaries, Lin and Jang (1998) proposed to implement
Delaunay triangulation20 to find the boundaries of
feasible operation events. This is not very true in highly
nonlinear systems such as high-purity distillation col-
umns. In this work, one step further, we developed the
generalized Delaunay triangulation approach to locate
the nonconvex operation region of a nonlinear system.
The information analysis based on the nonconvex
operation region guarantees the “completeness” of an
empirical model. This implies that an empirical model
always performs interpolations only.

Information entropy is derived by Shannon21 to
evaluate the uncertainty of a random variable. Recently,
substantial applications of this theory can be found in
the literature.22 In contrast to information entropy, the
authors derived information enthalpy to evaluate the
nonlinearity of a system.18,19 We suggest that it is more
appropriate to create new experiments by minimizing
the information free energy that is a function of the
information entropy and the information enthalpy.

The Taguchi method23 is a widely used technique for
experimental design in the industry. Our proposed
scheme is different from the Taguchi method in the
following aspects. The new experimental points in our
work are based on the minimization of the information
free energy by varying the location of new data points
while, in the Taguchi method, they are based on an
orthogonal table and maximization of the signal-to-noise
ratio. The Taguchi method only suggests an individual
manipulated variable operating at a predetermined
level. The proposed technique takes both manipulated
variables and response variables into consideration
before determining a new experimental point. Moreover,
the proposed algorithm is an evolutionary improvement
mechanism while the Taguchi method is not. Therefore,
the proposed technique can be applied to a dynamic
system while the Taguchi method can only be used in a
steady-state system.

Model predictive control of high-purity distillation
columns has been a challenging problem in the area of
process control due to its nonlinearity and multivariable
nature. Neural network models are an active approach
for the MPC of distillation systems. Baratti et al.24

developed a dynamic empirical neural network model
for top composition control of a multicomponent distil-
lation column. Savkovicstevanovic3 developed inverse
models for single-variable control of a distillation sys-
tem. Multivariable systems are seldom discussed due

to the complexity of the data structure. Doyle III and
Shaw25 discussed a multivariable recurrent dynamic
neuron network in MPC for a high-purity distillation
column. Their approach, however, did not guarantee
that the empirical model does not perform extrapolation
during on-line operation. In this work, an empirical
multivariable model that incorporates partial plant
knowledge of a high-purity distillation column is devel-
oped. The neural network model is “complete” and hence
will not perform extrapolation in plant operation. The
MPC based on the empirical model works satisfactorily
for the dual-temperature control of the high-purity
distillation column.

The objective of this work is to develop a systematic
approach for a dynamic multivariable ANN model that
is robust and complete to use in MPC. The contributions
of this work can be summarized as follows:

A new training policy for ANN models is developed.
This policy is very useful in the case that data are noisy
and/or partial plant knowledge is available.

An efficient experimental design algorithm is derived
for building up an empirical dynamic model. The ap-
proach identifies the feasible operation region for a
dynamic system so that the empirical model does not
perform extrapolation.

A novel approach to obtain the nonconvex feasible
region for a set of data is proposed.

In this paper, theoretical development of a data-
oriented model is discussed in the next section. The
details of the algorithm are presented in section 3. Three
illustrated examples including a realistic multicompo-
nent distillation column are given in section 4. Conclu-
sive remarks are given in section 5.

2. Theory

Consider the following generalized lumped system:

where x ∈ Rn are state variables, m ∈ Rm are system
inputs, and y ∈ Rp are system outputs or the on-line
measurements of a plant. The functions f and g are
presumably unknown due to lack of plant knowledge.
Assume that the above system can be described by the
following discrete time system with a determined sam-
pling time T:

where k is the current time. For simplicity of formula-
tion, let us take m ) p ) 2, that is, a 2 × 2 system.

The following derivation is general to all multiinput-
multioutput (MIMO) systems.
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It should be noted that the determinations of the
sampling time T and the system orders n1, n2, n3, n4,
m1, m2, m3, and m4 are nontrivial problems. Many
studies can be found in the literature.26-28 Herein, we
assume that system orders and sampling time for a
specific system can be obtained.

Denote an event that happened to system 1 or 2

where m5 ) sup(m1,m3), m6 ) sup(m2,m4), n5 ) sup-
(n1,n3), n6 ) sup(n2,n4), and

and the feasible region of system 1 or 2 is then
represented by

2.1. Problem Formulations. Consider a system 1
or 2; there exists an experimental event set

such that for all events

yjk+1 ) h(Ω) are determined by experiments and N is
the size of the of experimental event set. yjk is on-line
measurement and is contaminated by white noise. Let
new experiments be available; therefore, after new
experiments are performed, the size of Ω is expanded.

Partial knowledge of the system is assumed to be the
event set Ψ ⊂ Φ, such that for

h′ is known. Here we assume that the output of Ψ is
not noisy but that the knowledge can be incorrect, that
is, h′ * h. The purpose of this work is to find the
following model:

based on the training set Ω ∪ Ψ, where the elements of
Ω are from on-line experiments while the elements of
Ψ are from partial knowledge.

The new approach developed in this work is to treat
the above two different data sets by the following
philosophy:

(i) There must exist suitable penalties for the use of
operating data and partial knowledge in model training.

The penalties can be adjusted on the basis of their
significance.

(ii) The on-line data are usually noisy, while, in most
cases, the partial plant knowledge is not noisy. It would
be better to smooth the operating data before both sets
can be put together to train the ANN models.

The details of the above approach are presented in
the next section, while the development of the extended
experimental set is discussed in section 3.1.

2.2. Development of the Dynamic ANN Models
Using Operating Data and Partial Knowledge.
Given an ANN model in eq 4 as a three-layer (P input
nodes, H hidden nodes, and 2 output nodes) feed-
forward ANN model, denote the following input layer
for the model,

where P ) n5 + n6 + m5 + m6 + 4; then, the output of
the ith neuron of the hidden layer is

where i ) 1, ..., H. The lth output of the ANN model is

where l ) [1, 2]. wji
h and bi

h in eq 5 and w°li and b° in eq
6 are determined by minimizing the following objective
function:

where w is {wji
h, bi

h, w°ij, b°|j ) 1, ..., H; i ) 1, ..., P; l )
1, 2}, NG is the number of grid points where the
smoothness factor is calculated, and R is the number of
partial knowledge data points.

The first term in eq 7 is fitting the operating data,
the second term is smoothing the noisy operating data,
and the third term is fitting the partial knowledge for
ANN’s prediction. The penalty factors λ and â are
determined by the following derivation.

Given N total plant data, which can be separated into
two sets (that is, one is the training set (K data), and
the other is the validation set (N-K)), we determine the
minimum of the following conditional AIC14

by manipulating ú ) (λ, â).
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It should be noted that the smoothness term

in eq 7 can be analytically derived as the following:

2.3. Approximation of the Nonconvex Feasible
Region. In most cases, the accuracy of the testing set
does not automatically satisfy the on-line performance
of the ANN models. Even worse, extrapolation events
may happen during the on-line operation. It is hence
very desirable to find the feasible event set Φ, or some
other set Φ′ which is very close to Φ. Let us first denote
a convex hull C(Ω)29 for a set of dynamic events Ω.
Traditional interpolation (i.e. for a convex hull) could
be ensured if C(Ω) ) Φ′ ≈ Φ.

Definition 2-1 (Convex Hull). Given Ω ) {x1, ...,
xN}, then the convex hull of Ω is the smallest convex
set containing Ω, denoted as C(Ω). C(Ω) is bounded by
a set of linear inequalities that could be determined
uniquely as follows.

Definition 2-2 (Delaunay Triangulation). Given
Ω ) {x1, ..., xN}, Delaunay triangulation is a set of lines
connecting an individual point to its most close neigh-
bors of the region. If edges used by more than two
triangles are canceled, then the boundary of the convex
hull appears.

However, it should be noted that the on-line data are
contaminated by white noise, and the convergence of a
convex hull is shown by the following proposition:

Proposition 2-1 (Convergence of Convex Hull of
Noisy Data). (a) Given D ) {d1, ..., dN} as a Guassian
normal process (white noise), C(D) converges. (b) Given
Ω ) {ω1, ..., ωN} as the set of dynamic events of a
deterministic process and Ω′ ) {øi ) di + ωi|i ) 1, ...,
N, di ∈ D, ωi ∈ Ω}, then C(Ω′) converges.

Proof. See Appendix.
The major prediction error in modeling is usually

caused by extrapolation. Since C(Ω′) is available, this
study proposes to evaluate C(Ω′) over the full data
structure instead of a testing set. In case Φ′ is convex,
the approach is presented in our previous paper.19

However, many cases of chemical systems, such as high
purity columns, are nonconvex. We present the following
theoretical basis for the nonconvex system.

Definition 2-3 (Nonconvex Hull). Given Ω′ ) {ø1,
..., øN}, Divide Ω′ into an m subset Ω′ ) Ω′1 ∪ Ω′2 ∪ ...
∪ Ω′m. The nonconvex hull, NC(Ω′) ) ∪i)1

m C(Ω′i) can be
decided as follows.

Definition 2-4 (Generalized Delaunay Triangu-
lation). Generalized Delaunay triangulation is a set of

lines connecting an individual point to its most close
neighbors for points in Ω′j. If edges used by more than
two triangles and line segments overlapped with
∪i)1

m C(Ω′i,i*j) are canceled, then the boundary of the
nonconvex hull appears.

Nonconvex hull computing is processed as the follow-
ing steps

Step 1. Set m ) 1.
Step 2. Divide Ω′ ) {ω1, ω2, ..., ωN} into m subsets

Ω′1, Ω′2, ..., Ω′m; then the possible combinations for N
events belonging to m sets is (N, m).

Step 3. Perform Delaunay triangulation with respect
to øi, øi ∈ Ω′i.

Step 4. Cancel redundant line segments and edges
defined in definition 2-4 and acquire the nonconvex hull.

Step 5. Calculate the area of the nonconvex hull.
Step 6. Repeat steps 2-5 until all possible combina-

tions of subset formation are tried.
Step 7. Find proper nonconvex hull with minimal

area.
Step 8. Set m ) m + 1.
Step 9. Stop until the nonconvex area no longer

decreases; otherwise, go to step 2.
Figure 1 demonstrates the difference between De-

launay and generalized Delaunay triangulation ap-
proaches applied to a set of data. Initial data are divided
into two subsets denoted as + and O in Figure 1a. The
original Delaunay triangulation is shown in Figure 1b.
Generalized Delaunay triangulation gives a smaller
compact hull, as shown in Figure 1a, than the original
Delaunay triangulation approach shown in Figure 1b
in the case that the smallest convex hull is nonconvex.

The following proposition is a natural extension of
proposition 2-1:

Proposition 2-2 (Convergence of Nonconvex
Hull of Noisy Data). Given D ) {d1, ..., dN} as white
noise, and Ω ) {ω1, ..., ωN} is the dynamic event set of
a deterministic process. The operating data are defined
as follows:

The nonconvex hull NC(Ω′) converges.
Proof. See Appendix.
The above proposition remains true when partial

knowledge is present, that is Φ ≈ Φ′ ) C(Ω′∪Ψ).

∑
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) ∑
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m
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m
C(Ωi) is continous (11)

Figure 1. Generalized Delaunay triangulation and Delaunay
triangulation.

Ω′ ) {øi ) di + ωi|i ) 1, ..., N; di ∈ D; ωi ∈ Ω}
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3. Algorithm

3.1. Development of Extended Experimental
Data Set. Given the original training set Ω0 and
assuming that Φ′ can be approximated by the above
nonconvex hull NC(Ω0), our purpose is to develop an
extended training set Ω1, Ω2, ..., ΩK, such that

(i) the nonconvex hull N is bounded by the total
training set

(ii) for all ω ∈ Φ′,

The first condition guarantees that the model does not
perform extrapolation while the second condition is to
ensure the prediction quality of the ANN models. To
meet the above requirements, the authors developed an
information free energy experimental design (IFED) in
our previous work19 for convex hull systems. This work
extends the concept of IFED from the convex feasible
region and SISO systems to nonconvex and MIMO
systems. Note that Φ′ is denoted as the nonconvex hull
and is a continuous set with basically infinite elements.
However, the following information properties are de-
noted to a discretized set with a finite size. Define Φ′′
) {ω1, ω2, ..., ωQ} to be a discretized approximation of
Φ′ with all vertexes of Φ′.

(1) Information Entropy. The first objective of the
placement of a new experimental point is to put the new
data at a region where the original data are lacking.
Assume the probability measure of an event w ∈ Φ′′ can

be determined by all events wi ∈ Ω ∪ Ψ, i ) 1, ..., N, as
the following:

where u ∈ [-∞, ∞], and σ2 ) 1/∑i)1
N µ(ω|ωi), with µ(ω|ωi)

) µ(d ) |ω - ωi|) denoting the fuzzy membership of a
possible event ω ∈ Φ′ belonging to a training data ωi ∈
Ω ∪ Ψ. Later, evaluate the following information
entropy:30

The total information entropy of Φ′′ is hence denoted
as

According to eq 14, the change of the total information
entropy of Φ′′ for a new experiment ω added to the
training set can be evaluated. If the experiment is added
to the place where the training set is more sparse, then
the total entropy is lowered.

(2) Information Enthalpy. The second objective of
the placement of a new experimental data is to get more
information where the system nonlinearity is severe.
Assume that j iterations of experimental design have
been performed; that is, Ω1, Ω2, ..., Ωj new experimental
sets are developed. Given MIMO system 2 and ŷk+1

i as
the i-th output of ANN models for eq 2 based on the
training set Ω0 ∪ Ω1 ∪ ... ∪ Ωi ∪ Ψ, then for any event
ω ∈ Φ′′

where σ2 is dented the same with eq 12. The total
information enthalpy of the training set Φ′′ can be
evaluated:

According to the above definition, the information
enthalpy eq 16 can be evaluated. A new experimental
datum added to the training set will lower the total
information enthalpy if it is placed at a more nonlinear
place.

(3) Information Free Energy. In this work, the
above needssinformation entropy and information
enthalpysare balanced by introducing a new informa-

Figure 2. Flowchart of GAMIA.
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tion propertysinformation free energy. At the begin-
ning, we assume that the ANN models are inaccurate
due to the lack of experiments. It is more important to
put the new experiments at the places where data are
sparse. As more experiments accumulate, the model
becomes more accurate; then it is more important to put
the data at a region where the system is more nonlinear.
To perform this compromise, we introduce the following
scaling factor “information temperature” and “informa-
tion free energy”:

where temperature T is changed as a function of number
of experiments:

where N denotes the total number of experiments
including the initial data set, and T0 and c are tuning
parameters.19

3.2. Flow Chart. Figure 2 shows the algorithm
developed in the previous section. Assume that the noisy
operating plant data set Ω0 and partial knowledge
already exist. First of all, the parameters of the general-
ized objective function eq 7 of training of ANN models
are determined by solving eq 8. Next, the nonconvex hull
is implemented to approximate the feasible region. The
approximate feasible event set Φ′ is, in turn, discretized
and implemented to evaluate the information proper-
ties. The extended experimental data set is developed
to minimize the information free energy. These experi-
ments are performed and go back to check for the
nonconvex hull. However, if the total number of experi-
ments is accumulated to a predetermined level, the
problem of conditional AIC is solved again to determine
the penalties of partial knowledge and the smooth
factor. The algorithm presented in Figure 2 is termed
Generalized Artificial Neural Network Modeling Based
on Information Analysis (GAMIA for short). This ter-
minology will be used in the next section for conven-
ience.

4. Examples

In this section, three examples to demonstrate this
novel approach are presented. In the first example, we
only emphasize the importance of the smoothness factor
in training an ANN model, as the size of the experi-
mental data set is small and it is noisy. The second
example is the modeling of a simple nonlinear dynamic
process. In this example, the importance of conditional
AIC is fully demonstrated. In the third example, a
simulated multicomponent distillation column is pre-
sented. Peng and Jang26 found that satisfactory perfor-
mance on the system could not be achieved by conven-
tional feedback control. The feasible region of this
dynamic system is nonconvex. The ANN model for this
dynamic system is obtained by the GAMIA algorithm
and implemented for MPC. The results show that our
approach is valid and useful for multivariable model
predictive control on this complex system.

4.1. Example 1: ANN Modeling of a Simple
System. Consider the following quadratic system:

where ε ∈ N(0,2). Our objective is to build an ANN model

using 16 experimental data points which are generated
by setting x1 ) -3, -1, 1, 3 and x2 ) -3, -1, 1, 3. The
maximum number of nodes of the hidden layer is set to
be 4 when considering the number of fitting parameters
in the ANN model. For the sake of comparison, two
types of training strategies are used for all cases. The
first training strategy uses the first term of eq 7, and
this is the conventional ANN training strategy. The
second strategy takes the smoothness factor and/or
partial knowledge into account, that is, the second and
third terms of eq 7. The parameter λ is determined by
solving the conditional AIC criteria of eq 8. However,
this example excludes the partial knowledge term. The
comparisons of the two models are displayed in Figures
3. The figures show the contour plots with and without
the smoothness term in training ANN models with a 4
nodes hidden layer. Equation 19 is a simple circle; the
contour plot with the smoothness factor is more accurate
than the case without the smoothness factor. To dem-
onstrate the prediction capability of all these models in
this example, the sum of the absolute errors is calcu-
lated. With a testing set of 961 points, the sum of
absolute errors in the case without the smoothness
factor is 1259.8, which is twice the magnitude of that
for the case with the smoothness factor, that is, 639.4.
In this example, the results conclude that the smooth-
ness factor dramatically improves model accuracy,
especially in the environment of noisy measurements.

4.2. Example 2: Second-Order Dynamic System.
Assume an unknown system that is defined by the
following dynamic equation:

where uk ∈ [0,1] and yk ∈ [0,1]. We proposed its steady-
state equation is assumed and it is noise free as

The above equation represents the prior knowledge that
is partially correct. It is our purpose to obtain the
following dynamic model based on a set of noisy operat-
ing data Ω0.

Using the PRBS scheme,31 we sample 20 points as
the initial data set Ω0. The data are contaminated by a
normal distributed noise N(0,0.02). A set of 41 points
obtained from eq 21 represents partial knowledge data,
Ψ. To enhance the training set, the GAMIA algorithm
is implemented to acquire additional data. All three
different data sets, namely initial data, partial knowl-
edge data, and GAMIA data, denoted by (+), (O), and
(×), respectively, are plotted in Figure 4. A 3D plot is
shown in Figure 4a while its projection into the yk and
yk-1 plane is shown in Figure 4b. The solid line in the
figure is obtained by solving eq 20 analytically. The
approximate boundary of the feasible region obtained
by conducting the convex hull scheme is shown as dotted
lines. Observing the figure closely, we find that all
GAMIA data are almost located at the void place where
the initial data and the partial knowledge data rarely
appear.

To investigate the effect of the smoothness factor in
ANN modeling, we take three lots of the initial data set,
that is, 30, 60, and 100. Since the total feasible region

G ) H - TS (17)

T(N) ) T0 exp(-cN1/z) (18)

y ) x1
2 + x2

2 + ε (19)

yk+1 ) 0.28yk-1
2 + 0.36yk + uk/3 (20)

0.28ys
2 - 0.64ys + us/3 ) 0 (21)

yk+1 ) ANN(yk,yk-1,uk) (22)
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Φ for this example is completely known, we uniformly
sample 1093 points from Φ as the testing set. In Figure
5, the sum of absolute errors in the testing set is plotted
as a bar chart versus the smoothing factor λ with the
data size of Ω0 as a parameter. The sum of absolute
errors in each case without considering the smoothness
factor, that is, λ ) 0, is almost twice the magnitude
compared to its counterpart taking the smoothness
factor into consideration. It may be noted that if the
initial data set is small, the effect of smoothness is
significant. Smoothing the initial data can decrease
errors caused by noisy data or by data extrapolation due
to insufficient data. ANN modeling is a kind of curve
regression. The optimal setting of the smoothness factor,
λ becomes insignificant when the size of Ω0 is large.

Figure 5 indicates that the optimal value of the smooth-
ness factor, λ changes with the number of data in Ω0.

After the conditional AIC of eq 8 is solved, the
parameters in the objective function eq 7 are then
determined as (λ, â) ) (0.3488, 2.9605) for the case of
20 initial data. According to the GAMIA algorithm
proposed in the previous section, more and more ex-
perimental data are suggested and performed during
the iterative improvement of process modeling. Figure
6 demonstrates the importance of partial knowledge
provided in eq 21. Given 20 initial data points from eq
20, the sum of absolute errors in the testing set
decreases along with the increase of GAMIA data. The
incorporation of partial knowledge data dramatically
reduces the sum of errors. As shown in Figure 6, 10
GAMIA data points with partial knowledge data out-
perform 50 GAMIA data points without partial knowl-
edge.

In the case of significant incorrect partial knowledge,
assume that the following steady-state equation is
implemented

against the correct steady state eq 20. Assuming the
initial 20 noise free experimental data are available and
solving the conditional AIC eq 8, weighting of (λ, â) )
(0.298, 0.03768) is obtained. Compared with the previ-
ous case, this makes sense since the partial knowledge
is incorrect. It may be noted from Figure 6 that the
incorrect partial knowledge basically deteriorates the
quality of the ANN model. However, the implementation
of the conditional AIC reduces the effect of the incorrect
partial knowledge by giving a smaller parameter for the
third term in the object function eq 7.

4.3. Example 3: Multicomponent Distillation
System. Figure 7 gives the schematic diagram of a
multicomponent distillation system. The feed stream
consists of benzene, toluene, and xylene. The design
parameters of the column and the steady-state profiles
are listed in Table 1. The product in the top stream is
highly purified benzene. The operation objective of the
system is to control the top and bottom temperatures
by manipulating the reflux flow rate and the heat duty
of the reboiler. The model of the distillation column is
to be identified as follows

Figure 3. Contour plot of neural models for the quadratic system.

Figure 4. 3D plot of second-order dynamic system with initial
PRBS data (+): partial knowledge (×), GAMIA data (O).

Figure 5. Effect of smoothness factor for second-order dynamic
system.

Figure 6. Effect of partial knowledge (PK) data for second-order
dynamic system.

0.252ys
2 - 0.64ys + us/3 ) 0 (23)

[yk+1
1 , yk+1

2 ] ) h(mk
1,mk

2,yk
1,yk-1

1 ,yk
2,yk-1

2 ) (24)
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where yk
1 is the bottom temperature, yk

2 is the top
temperature, mk

1 is the reboiler heat duty, and mk
2 is

the reflux flow rate.

In this case, we assume that 120 noisy dynamic plant
data and a steady-state equation are available. Thirty-
six noise free data derived from the steady-state equa-
tion32 represent the partial plant knowledge. The con-
ditional AIC eq 8 is solved to find the parameters of the
ANN training objective function eq 7. The GAMIA
strategy is applied to determine the extended experi-
mental data set. The extended experiments are per-
formed for both convex and nonconvex hulls, as shown
in Figure 8, where the shaded area indicates the
nonconvex hull while the solid line indicates the convex
hull. The first 100 experimental design points based on
the convex hull scheme may suggest infeasible experi-
ments denoted by (×) as shown in Figure 8a while the
nonconvex hull scheme shown in Figure 8b would
always suggest feasible experiments denoted by (O). The
performances of these two ANN’s are compared on the
basis of the 1200 PRBS testing data set. The total
absolute error of the testing set is 127 for the case of
the convex assumption but only 84.4 for the nonconvex
hull.

The ANN models for the column are built on the basis
of the following schemes:

(1) ANN models trained by 140 GAMIA experimental
data as well as 120 initial data with smoothness and
partial knowledge terms included;

(2) ANN models trained by 600 operating data gener-
ated by the random amplitude sequence (RAS);33

(3) ANN models trained by 600 operating data gener-
ated by the pseudorandom binary sequence (PRBS).31

The MPC controller used in servo control is imple-
mented by the following objective function.

where ŷ(k + i|k) is the predicted output calculated from
current time k and ysp

j is the set point. All the param-
eters, horizons, and penalties in eq 25 are well-tuned
according to our knowledge to MPC approaches.

Figure 9 compares the servo behaviors of MPC
controllers based on ANN models trained in cases 1, 2,
and 3. The set points of the top and bottom tempera-
tures are changed at t ) 0 and t ) 300, respectively.
The temperature measurements are contaminated by
normal distributed noise (ε ∈ N(0,0.05)). The control
results in Figure 9 show that the models developed by
the GAMIA approach are much superior to other cases.
Adding up the IAE in the top temperature control loop
and the bottom temperature control loop, the total IAE
in GAMIA is only half of that in the RAS and PRBS
cases.

The MPC controller used in regulation34 is set by the
following objective function under the assumption of the
truth of the principal of superposition:

Figure 7. Schematic plot of the distillation tower.

Figure 8. Suggested experimental points of the convex hull and
the nonconvex hull.

Table 1. Steady-State Profile of the Distillation Column

design parameter value
tray

number
temp
(K)

benzene
composition

(%)

top product temp (K) 389.5
bottom product temperature 354.1 1 389.5 0.028

(K)
feed flow rate (lb mol/h) 200 2 385.0 0.060
feed temperature (K) 353.2 3 381.8 0.110
feed benzene composition (%) 50 4 378.5 0.178
feed toluene composition (%) 35 5 375.1 0.260
feed xylene composition (%) 15 6 372.0 0.346
reflux flow r5ate (lb mol/h) 130 7 369.4 0.421
reboiler heat duty (kBTU/h) 3350 8 367.6 0.476
distillate flow rate (lb mol/h) 99.63 9 366.5 0.513
bottom product flow 100.37 10 365.8 0.535

rate (lb mol/h)
operating pressure (atm) 1 11 363.2 0.599
tray number 18 12 361.4 0.656
feed tray 10 13 359.9 0.715
tray efficiency 1 14 358.4 0.776
column diameter (ft) 4.5 15 357.0 0.838
reflux drum diameter (ft) 4 16 355.8 0.893
sump diameter (ft) 4.5 17 354.8 0.940
tray area (ft2) 15.9 18 354.1 0.976

min ∑
j)1

2

∑
i)1

8

(ŷj(k + i|k) - ysp
j ) +

0.035∑
i)1

2

[∆m1
i /3 + ∆m2

i ] (25)

min ∑
j)1

2

∑
i)1

8

(ŷj(k + i|k) - ysp
j - (yjk

j - ŷj(k|k - 1))) +

0.035∑
i)1

2

[∆m1
i /3 + ∆m2

i ] (26)
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Figure 10 demonstrates the regulation behavior of
MPC controllers based on ANN models trained in cases
1, 2, and 3. The composition of benzene is suddenly
decreased by 5%, and that of toluene is up by 5%. Figure
10 shows that the model developed by this work is still
superior to all other cases. Adding up the IAE in the
two control loops, the total IAE in the GAMIA case, that
is, 52.7, is much better than that in the RAS case, that
is, 87.4, and that in the PRBS case, that is, 94.3.

However, assume that RAS and PRBS may double their
data size to 1200. Table 2 gives the IAE for all servo
and regulation results. The GAMIA still appears supe-
rior to all other models with a much smaller training
data set.

Note that, for all RAS and PRBS approaches, some
unexpected extrapolation may happen, as discussed in
the previous sections, for instance, if the top set point
is at 353.7 K and the bottom set point is at 377.3 K. A
small change in the set point of the bottom temperature
to 377.1 K is implemented; then the results are shown
in Figure 11; that is, the RAS ANN model fails to
maintain both top and bottom at their set points.

From Figures 9-11 together with Table 2, the results
clearly indicate that the model based on GAMIA works
almost perfectly in all three situations while models
based on RAS and PRBS perform fine in some situations
and fail in other situations.

5. Conclusions

In this study, we combine initial data, partial knowl-
edge data, along with experimental design data to train
an ANN model. In the experiment design step, the
constraint of a nonconvex hull guarantees the points
suggested by experimental design would be in a feasible
region. During modeling, noisy data are smoothed by
taking the smoothness factor into consideration.

In the first example of a quadratic system, we
demonstrate the effectiveness of the smoothness factor
in the noisy environment. In the second example of a

Figure 9. Servo control performance comparison: (a) top tem-
perature control loop; (b) bottom temperature control.

Figure 10. Regulation control performance comparison: (a) top
temperature control loop; (b) bottom temperature control.

Table 2. Regulation and Servo Control Performance
Comparison

bottom
IAE(R)

top
IAE(R)

total
IAE(R)

bottom
IAE(S)

top
IAE(S)

total
IAE(S)

GAMIA 17.2 35.5 52.7 25.8 37.0 62.8
RAS 1200 14.8 48.5 63.3 34.6 61.8 96.4
PRBS 1200 29.2 58.2 77.7 54.2 47.4 111.6

Figure 11. Regulation control performance comparison: (a) top
temperature control; (b) bottom temperature control.
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dynamic system, the smoothness factor and partial
knowledge are incorporated into the GAMIA algorithm.
It is shown that partial knowledge, though being incor-
rect, may be as effective as the smoothness factor in
enhancing model quality. In the final example, a
realistic multiple-component distillation system is simu-
lated. The results show that this approach is very useful
for the development of gray box models that can be
implemented for multivariable nonlinear model predic-
tive control.

The new experimental points in our work are based
on the minimization of the information free energy by
varying the location of new data points.19 The widely
accepted Taguchi method is built on an orthogonal table
and maximization of the signal-to-noise ratio. The
Taguchi method only suggests an individual manipu-
lated variable operating at a low or high level. The
evolutionary improvement mechanism is not well de-
fined in the Taguchi method. Both the Taguchi method
and the response surface methodology design manipu-
lated variables only. However, we have to consider
manipulated variables and response variables at once
in order to design new experimental points. The tradi-
tional experimental design approach would not be
appropriate in our work.
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Nomenclature

C ) convex hull
NC ) nonconvex hull
x ) state variables
m ) system inputs
y ) system outputs
T ) sampling time
h ) discrete time, input-output model
h′ ) discrete time, input-output model indicated by partial

knowledge
hi ) output of the ith neuron of the hidden layer in neural

networks
yjk ) on-line measurements contaminated by white noise
ŷk+1 ) dynamic system output indicated by partial knowl-

edge
ŷk+1

1 ) dynamic system output predicted by neural net-
works

wh ) weightings between the input layer and the hidden
layer in the neural network

w° ) weightings between hidden layer and the output layer
in the neural network

w ) weightings in the neural network model, {wh, bh, w°,
b°}

J(w) ) training objective function of neural networks
b° ) bias of nodes in the output layer
bh ) bias of nodes in the hidden layer
NG ) number of grid points where the smoothness factor

is calculated
N ) number of experimental data points
K ) number of training data points
S ) information entropy
T ) information temperature
H ) information enthalpy
G ) information free energy
∆GSTOP ) stopping criteria of the free energy change

Estop ) stopping criteria for the difference between Xpre and
Xexp

R ) number of partial knowledge points
Q ) number of events in Φ′′
p ) probability measure
u ) dummy variable
c ) constant used in information temperature scheduling
z ) constant used in information temperature scheduling
ŷ(k + i|k) ) neural model predicted output calculated from

current time k
ysp ) set point
b ) support function of convex hull
u ) unit vector
D(r) ) support function of convex hull in a polor coordinate

system
M ) a stationary process
diam ) diameter of a set
an ) a constant sequence
L ) a sequence of process

Greek Symbols

λ ) penalty of smoothness factor
â ) penalty of partial knowledge
Φ ) feasible region
Φ′ ) feasible region contaminated by white noise
Φ′′ ) discretized approximation of feasible region
σ2 ) variance of normal probability distribution
µ ) fuzzy membership function of a possible event
φi ) element of feasible region Φ
Ω ) experimental data set
Ω′ ) experimental data set contaminated by white noise
ω ) dynamic event set
ωi ) element of experiment data set
Ψ ) partial knowledge
ψi ) element of partial knowledge
ø ) input vector of neural networks
ú ) (λ, â) ) penalties to be determined in conditional AIC
Λ ) Gauassian normal process (white noise)
κ ) element of Λ

Subscripts

k ) current time
s ) input order of the dynamic system h
s′ ) output order of the dynamic system h
m1, m2, m3, m4, m5, m6 ) input order of the dynamic

system
n1, n2, n3, n4, n5, n6 ) output order of the dynamic system

Superscripts

1 ) first system output
2 ) second system output

Special Operators

x ) Minkowski addition of sets
f
w ) weak convergence

Appendix

1. Lemma (Minkowski Addition of Two Compact
Sets). Denote Minkowski addition x for two sets Λ )
{di/i ) 1, ...} and Ω ) {ωj/j ) 1, ...}

If Λ and Ω are compact, then Λ x Ω is compact.
Proof: Define the diameter of a set as

Both diam(Ω) and diam(Λ) are finite because Ω and Λ

Λ x Ω ) {di + ωj|∀di ∈ Λ, ωj ∈ Ω, i ) 1, ..., j ) 1, ...}

diam(W) ) sup
ωi,ωj∈Ω

|ωi - ωj|
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are compact.

Therefore, diam(Ω x Λ) is finite. And Λ x Ω is compact.
2. Proof of Proposition 2-1. (a) Convergence of

Convex Hull for a Gaussian Normal Process. Λ can
be viewed as a stochastic process. Let Kd be a collection
of a nonempty compact convex subset in Rd. Define the
support function of K ∈ Kd as

where ‚ is the inner product in Rd and k ∈ K.
The support function bk is a continuous function on

the unit ball in Rd. Because Λ ) {k1, ..., kN} is
independent and identically distributed in R2, the
support function of the convex hull C(Λ) in the polar
coordinate is

where {Bi} is a sequence of gaussian normal processes
on [0, 2π] and r is the phase angle. The area of the
convex hull is

And the perimeter of the convex hull is

A direction computation of the above equation would
be difficult since D(r) does not have a simple form.
Define a new sequence of processes as

{an} is defined as35

then

where M is a stationary process and f
w stands for weak

convergence.36 We can conclude that {Bi} is limited and
that D(r) is finite and some properties of the convex hull
of Λ, such as area and perimeter converge. Therefore,
C(Λ) and Λ are compact.

(b) Convergence of Convex Hull for Noisy Data.
Assuming that C(Ω) and Ω are compact, since the
dynamic event of a deterministic process is limited to
the available control input resource, C(Λ) and Λ are
compact by proposition 2.1(a).

Given Ω′ ) {xi ) di + κi|i ) 1, ..., N, κi ∈ Λ, di ∈ Ω},
then Ω′ ⊂ Λ x Ω. According to lemma 2.1, C(Λ x Ω)
and Λ x Ω are compact. Then C(Ω′) is compact too.

3. Proof of Proposition 2-2 (Convergence of
Nonconvex Hull)

According to proposition 2-1, C(Ω′i) converges and
area(C(Ω′i)) is finite.

area (N(Ω′)) is finite, and N(Ω′) converges.
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