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The goal of this article is to use operating data-based approaches for automating the manufacturing
of submicron flash memory devices in semiconductor. This novel technique which combines the
neural network and information inductive analysis has recently been proposed. It is used in this
article to generate the recipe for plasma etching process design. Traditional plasma etching variables
such as pressure, gas flows, temperature, rf power, etc., are used to build the neural network for
predicting etching rate of polysilicon and field oxide, and the uniformity of field oxide. The
information inductive analysis based on the information entropy and fuzzy clustering analysis is
then utilized to look for the candidate points in each optimal region whose response surface is
constructed based on the neural network model. With only a few runs, the best optimal condition
getting close to the design requirements is found. Since the complexity of plasma modeling and
design at the equipment level is presently ahead of theoretical method from a fundamental physical
standpoint, the proposed method can effectively cope with nonlinear characteristics in the plasma
etching process, giving good design directions and taking advantage of traditional statistical
approaches. Using the proposed method within four runs and a total of 26 experimental points, the
recipe that meets all specifications is found. ©1999 American Vacuum Society.
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I. INTRODUCTION

Over the last decade, intensive global competition am
semiconductor manufacturers has called for the need of fi
ing a good recipe for innovative products. If a new produ
cannot be made just in time to meet the need in the mar
it would be outdated or even no longer wanted. It is a
important that accelerating product design should be don
the minimum costs without the expense of product qual
In the semiconductor field, plasma etching is regarded c
cal to product quality. In this article, a novel technique tha
a combination of the neural network and information indu
tive analysis is employed to generate the recipe for plas
etching process design.

The proposed method can effectively cope with nonlin
characteristics in the plasma etching process, giving g
design directions and taking advantage of traditional stat
cal approaches. Neural networks have demonstrated
strong capability of learning nonlinear and complex relatio
ships between process variables without any prior knowle
of system behavior. This particularly fits the highly compl
process of plasma etching. Since the complexity of plas
modeling and design at the equipment level is prese

a!To whom correspondence should be addressed; electronic mail:
jason@wavenet.cycu.edu.tw
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ahead of the theoretical method from a fundamental phys
standpoint, many researchers have focused on the emp
approach to plasma modeling, like neural networks. In rec
years, the number of applications of neural networks to et
ing process has increased dramatically.1–5 Research shows
that neural network models exhibit superior predictive abil
over traditional statistical methods and require less exp
mental training data. Literature that deals with the use
neural networks to solve semiconductor fabrication proble
includes: the polysilicon film growth by low-pressure chem
cal vapor deposition,6 the removal of polysilicon film by
plasma etching,7 the behavior of real-time reactive ion etch
ing process,8 etc.

Basically, a neural-network approach can save time
money. It also learns and extracts the process behavior f
the past operating information. It can be used as a mode
process optimization and control design. However, a la
amount of data points is usually needed for training neu
network models. It is not applicable to process design si
only the data located at the optimal design region are crit
to building the neural network model. In order to reduce t
amount of training data, a random search is utilized to lo
for the possible optimal regions. The information inducti
analysis based on the information entropy and fuzzy clus
ing analysis is employed to determine the good candid
145/17 „1…/145/9/$15.00 ©1999 American Vacuum Society
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points at each optimal region. The information inducti
analysis is regarded as a response surface management
egy for constructing and updating the neural network mod
Therefore, further experimental runs should be done to ve
those candidates and update the neural network model. W
only a few runs, the best optimal condition which is getti
close to the design requirements is found.

In this study, the proposed method is applied to the s
aligned source~SAS! process technology.9 Etching is per-
formed on a test structure design to facilitate the simu
neous measurement of the etching rate of polysilicon
field oxide, and the uniformity of field oxide. The first tw
variables are required for etching selectivity. The most i
portant parameters during the design process are rf po
chamber pressure, bottom electrode temperature, CO fl
and Ar flow. The CO gas is considered as one of the ca
dates because it can help improve the oxide etching sele
ity to silicon. The most challenging etching process in t
SAS field oxide dry etching process is that the silicon s
strate is exposed in the plasma environment during the e
ing process. This is different from the conventional cont
via dry etching process where the silicon substrate is p
tected by dielectric film until the end point is approache
Through this study, the proposed method not only exhib
superior accuracy and effectiveness but also utilizes less
perimental points when searching for the desired recipe.

This article is organized into five sections. In the ne
section, the SAS process is introduced. Section III expla
the core of the proposed experimental design. Experime
study and discussion are addressed in Sec. IV. Sectio
gives concluding remarks.

II. SELF-ALIGNED SOURCE ETCHING PROCESS
CHARACTERIZATION

In the manufacturing of submicron flash memory devic
the SAS process technology is adopted. By using the S
design and process, the shape of the source or drain regi
made so straight that there is no variation in the coupl
ratio. By minimizing the variation in coupling ratio, the tigh
threshold voltage distribution after the program and eras
operation can thus be achieved.

The SAS field oxide dry etching process is the most ch
lenging etching process. As illustrated in Fig. 1, the silic
substrate has been exposed in the plasma environment
the etching process started. The SAS field oxide dry etch
process is supposed to meet the criteria of both removing
field oxide effectively and sustain minimum amount of si
con loss. According to the device memory cells’ data ret
tion performance data, the silicon loss should be contro
at the level of less than 30 nm. In order to maintain reas
able oxide etching rate~throughput concern! and control the
silicon etching rate to minimize silicon loss, the oxide etc
ing recipe’s selectivity of oxide to silicon on the pattern
wafer should be maintained at the level of greater than 3

Etching is performed on a test structure design to fac
tate the measurement of the etching rate/uniformity of po
silicon and SiO2 . These data are required to determine
J. Vac. Sci. Technol. B, Vol. 17, No. 1, Jan/Feb 1999
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etching selectivity of SiO2 to silicon substrate. Test pattern
are fabricated on 6-in.-diameter silicon wafers. Current ox
to silicon selectively performance of the CHF3/CF4 chemis-
try based reactive ion etch~RIE! mode oxide etcher range
from approximately 15 to 1. According to the literatu
data,10 selectivity is primarily determined by the C/F ratio i
the etchant chemicals. The increase of the C/F ratio can
prove the selectivity of oxide to silicon, so CO gas has be
considered as one of the factors which can help improve
oxide etch selectivity to silicon. Besides CO flow, the oth
critical parameters in this recipe design including rf pow
chamber pressure, bottom electrode temperature, and Ar
will determine the oxide to silicon selectivity. In order t
acquire the process data, an etching monitoring system tr
ferring data from the RIE chamber onto a workstation h
been designed and implemented. LAM Research RIE m
4520 single-wafer parallel–plate system operating at 4
kHz is chosen as the plasma etching tool in this study. T
patterned wafer with the deposition of SiO2 and polysilicon
is etched for 30 and 120 s, respectively. The remaining th
ness of the oxide and polysilicon before and after plas
etching are measured by PROMETRIX FT-750 film thic
ness probe system on specific pattern opening area. The
input factors and their corresponding range of operation
shown in Table I. The etching process in this study is rep

FIG. 1. In SAS etching process, Fox represents field oxide and Si is silic

TABLE I. Operation ranges of input variables.

Variable Range Unit

Power 700– 900 W
Pressure 200– 300 mTorr
Bottom electrode temperature 220–110 °C
CO gas flow 100– 300 sccm
Ar gas flow 100– 300 sccm
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sentative of a typical plasma etching fabrication used for
processes.

The objective is to find a recipe~or an operating condi-
tion! that satisfies the following specifications:

etching rate of field oxide~OX E/R!.4000 Å/min, ~1!

uniformity of field oxide~OX U!,5%, ~2!

etching rate of polysilicon~Poly E/R!,100 Å /min, ~3!

where uniformity is calculated by max/min.

III. INTEGRATION OF NEURAL NETWORK AND
INFORMATION INDUCTION

An optimal experimental design architecture that in
grates the neural network and information induction
implemented for SAS process~Fig. 2!. The past operating
data are collected for the feedforward neural network mo
to predict plasma system behavior. The information ind
tive tool is used to extract and suggest the new manipula
conditions. It also maintains the desired process variable
the desired region, such as etching rate or uniformity, for
next run. The main advantage of the control of the plas
variable is adjusting the manipulated parameters that
more directly related to etching characteristics. Additiona
the integrated approach provides etching modeling and
cess information both during and between process run
run. The entire methodology is described in our previo
work. For a detailed coverage, see Ref. 11.

A. Modeling using neural network

Neural networks are a recent development in the field
plasma etching. They can learn the arbitrarily complex, n
linear relationship between inputs and outputs. By train
the net, the back-propagation algorithm reduces the dif
ence between the neural network output and the actual

FIG. 2. Optimal experimental design architecture.
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perimental values. Once trained, each neural network re
sents a nonlinear or complex function for the output tha
learned.12,13 The major advantage is that the network is d
rived from the data presented instead of the exact form of
analytical function on which the model should be bui
However, for general statistical models, a prior choice can
be assumed for the functional form. Moreover, a small nu
ber of experiments may not be enough to develop appr
mation to the function. The neural network is ideally suit
to semiconductor process modeling mainly because of
ability to directly learn the input–output relationships.

The process under consideration in this study is etching
the field oxide in a CO-and-Ar plasma. There are five r
evant input parameters: rf power, chamber pressure, bo
electrode temperature, and the flow of the two gases.
responses of interest to be controlled are the etching rat
the polysilicon ~Poly E/R!, field oxide ~OX E/R!, and the
uniformity of field oxide~OX U!. They are functions of the
previous five input variables. The ability of the neural ne
work to learn the relationships between the five inputs a
three outputs is attributed to the multiple parallel process
units that are interconnected to each other and the weigh
the connection that stores the experimental knowledge.
structure of a network in this study composed of three lay
is shown in Fig. 3. In the plasma etching application, t
input layer of neurons receives external information cor
sponding to the five adjustable design parameters,xp

5@x1
p , . . . ,x5

p#. The output layer transmits information t
the outside world, corresponding to the predicted control
or response variables~in this case, the etching rate of th
polysilicon and field oxide, and the uniformity of field ox
ide!, yp5@y1

p , . . . ,y3
p#. The input and the output compo

nents of thepth data pair are defined by$xp,yp%. The hidden
layer composed ofNh neurons can be considered as rep
sentation in the fundamental physical characteristics
plasma. Its output is given by

FIG. 3. Architecture of a three-layer feed forward neural network.
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hj~xp!5(
i 51

5

wji
h xi

p1bj
h , j 51,2, . . . ,Nh , ~4!

and the response output is given by

ŷk~xp!5(
j 51

Nh

wk j
o z@hj~xp!#1bk

o , j 51,2,3, ~5!

wherewk j
o and wji

h are the weights between the output a
the hidden layers and the weights between the hidden and
input layers, respectively,bk

o and bj
h are the biases in the

hidden layers and the output layers, respectively, andz is the
output in the hidden layer. The hyperbolic tangent activat
function is used in this study.14 The sum square error,E,
which represents the error between the predicted and targ
values is employed to evaluate the performance of the
work:

E5
1

P(
p51

P

(
k51

3

@yk~xp!2 ŷk~xp!#2, ~6!

whereP is the number of experimental data.
In this study, the pseudo-Gauss–Newton meth

algorithm15,16 is used for training. Note that the network h
no fixed topology. That is, the number of hidden neuro
varies, depending on the desired network performance. C
validation is used when training and testing the neural n
work. Due to the small quantity of the experimental~train-
ing! data available, a statistical technique called the lea
one-out ~LOO! cross-validation scheme17 is used to
overcome the possible overfitting or bias introduced by re
ing on any particular division into testing and training se
This is an attractive vehicle for generalization assessmen
a neural network model. Although it is computationally e
pensive, time loading is not very heavy due to the sm
experimental data used in this study.

B. Decision making based on information induction

In this information induction step, it contains two mo
ules:regional optimal searchandfuzzy information analysis.
The purpose of this step is to create some optimal reg
and possible optimal operating conditions based on the n
ral network model generated in the previous step.

The first module,region optimal search, extracts features
from the previously built model. In product and process d
velopment, the feature of interest is the condition that sa
fies the desired optimal operation. However, multiple lo
optima are frequently encountered. It is often necessar
rate alternative local optima based on secondary object
such as robustness, safety, etc. Therefore, nongradient b
search procedure, like random search or gen
algorithm,18,19 should be used. It should be pointed out th
this module is what we do with this population. Therefo
the optimal regions can be gotten. Figure 4~a! shows that the
representation of the performance surfaceZ(x1 ,x2) of a neu-
ral network model is built for the experimental da
J. Vac. Sci. Technol. B, Vol. 17, No. 1, Jan/Feb 1999
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(Z,x1 ,x2). The optimal regions generated by the optim
search against the contour background of the neural netw
model are depicted in Fig. 4~b!.

In reality, it is impossible to perform experiments at a
the points in all the optimal regions. The secondary modu
fuzzy information induction, is proposed here to select th
most representative candidate points. Then the experim
will be performed only at those candidate points. The fuz
information induction technique is composed of the fuz

FIG. 4. Optimal-search algorithm.~a! The function of two variables has fou
local minima. ~b! The optimal regions are found based upon the sea
results. The background shows the contour of the original model.
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classification and information analysis for classifying t
possible optimal regions.

The fuzzyc-means~FCM!20,21 is used here for classifica
tion. The purpose of the clustering process is to distil
certain number of homogeneous clusters or classes fro
large data set and to classify concise representation of
individual local optimal behavior. With the preset number
clusters performing FCM, the degree of its membershipm ik

can be obtained to characterize the data point as being,
greater or less degree, a member of the appropriate clu
The data points for each class also correspond to the clu
centerci . Here,m ik is a fuzzy membership which measur
the degree of association of thekth data pointxk with the ith
cluster class andci is the center of theith cluster.

In general, more classes can help clarifying the picture
classification. However, additional classes increase our
den since we have to perform test experiments at each c
tering center. The more classes we use, the more experim
we need to perform. Our goal is not to produce the crisp
classification but to locate optima as quickly as possib
Hence, an information induction is used to determine
optimal number and location of the next set of experimen
The information analysis technique is based on the con
of entropy and predicted performance for classifying the p
sible optimal regions. The entropy measures how well a
of cluster means classifies the data points, and energy m
sures how well a set of cluster means performs if it is cho
as the next set of experiments. The composite informa
formula is defined:

F5U2TS. ~7!

This equation is balanced by three terms: information
ergy,U, information entropy,S, and normalization factor,T.

The information energy,U, which is just the expected
value of the performance index is defined:

U5(
j 51

C
Nj

N
f @ ŷ~ci !#2 f min , ~8!

where f min is the value of the minimumf recorded in the
optimal search andf @ ŷ(ci)# is the performance index evalu
ated at the cluster centers. The information energy is a m
sure of the relevance of the messages generated by the
tering analysis to the optimization procedure.

The concept of entropy,S, is used to measure the purit
of a class, i.e., the distribution among the classes of
process variables within the set. The fuzzy entropy
classification which stems from the concept of Shano
entropy22,23 can be calculated from

S~ci !5 (
xPX

p~xkuci !ln@p~xkuci !#, ~9!

S~C!5(
i 51

C
Ni

N
Si , ~10!
JVST B - Microelectronics and Nanometer Structures
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whereS(ci) is the entropy of classification for theith cluster
andp(xkuci) is the probability of findingxk as a representa
tive of the ith cluster, i.e., p(xkuci)5 (m ik /Ni) and Ni

5(k51
N m ik . Equation ~10! gives weighted average of th

entropies for each class. The weights are obtained by di
ing the sum of the fuzzy values found in theith cluster by
their total. Note that the value of this total equals the num
of points in the whole optimal regions. Therefore, the e
tropy of the entire classification set can be defined as

S~C!5
1

NS (
i 51

C

(
k51

N

m ik ln m ik2(
i 51

C

Ni ln Ni D . ~11!

In the above equation, the first term of the right-hand si
m ik ln mik , represents the penalty of overlapping betwe
groups. If the data points belong to one group~i.e., m ik→1
and m jk→0, iÞ j ), the contribution of these data points
the first term is negligible. On the other hand, if the da
points belong to a large number of groups,m ik will be non-
zero for several groups and the term,m ik ln mik , becomes
significant. The second term of the right-hand side is a m
sure of the size of each cluster. The smaller the clusters
the larger and more orderly the entropy is. Note thatS→0 at
C→N. However, the increase in entropy with the increas
number of clusters is offset by how clearly we can divide t
data into groups.

In order to avoid the issue of order of magnitude diffe
ence betweenU andS, a proper scaling normalization facto
T, in the Eq.~7! is added to the energy term:

T5
f max2 f min

ln N
, ~12!

where f max is the maximumf of all surviving points in the
regional optimal search. During the procedure of determ
ing the number of clusters,T remains constant. This is analo
gous to the thermodynamic equilibrium criterion under is
thermal condition that the free energy is minimized. Duri
the initial phase of the search, the data are relatively s
tered andf max2 f min is relatively large. The information in-
duction places more emphasis on obtaining the shape o
performance relation rather than finding the optimum. As
data accumulate with more new experiments, the resul
regional optimal search will concentrate toward global o
tima, f max2 f min would decrease. Emphasis should be plac
less on categorizing information and more on optimizatio
By finding out the desired class and its center, we can de
mine the optimal operating points.

C. Feedback testing

Based on the class center from the information inducti
the final step, feedback control, can suggest changes in
input parameters and see if the output performance is
proved. The process we are controlling may drift rapidly d
to changes in the process. When this occurs, the opti
operating point specified by the information induction m
not produce the best desired output. At this point, it may
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FIG. 5. Optimal etching process design at different batches.~a! Target deviation plots for the current~x! and the past~o! experiments.~b! Top view of~a! from
OX U and Poly E/R directions.~c! Side view of~a! from OX E/R and OX U directions.
e
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necessary to conduct new experiments to regenerate th
sponse surface and classification information induction. T
iterative procedures keep running until the desired per
mance is found. Please note that all experimental points
J. Vac. Sci. Technol. B, Vol. 17, No. 1, Jan/Feb 1999
re-
e
r-
re

not wasted in each run because they provide informa
which is incorporated into the neural network model for t
next system analysis.

The advantages of the integrated neural network and
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formation induction in the experimental design are resumm
rized here. The neural network is used to build a mo
based on the plasma variables directly related to etch
characteristics and the information induction analysis is
determine the best possible operating conditions for test

IV. EXPERIMENTAL RESULT AND DISCUSSION

The development of an optimal operating condition
field oxide etching consisted of two stages. In the experim
tal stage, some experiments are performed to collect the
evant measurement parameters which can represent the
acteristics of the etching process. The next stage is to ana
the etching data gathered from these trials. Those data
used to train neural network based process models. Infor
tion induction design is subsequently employed to determ
the possible optimal operating conditions. New experime
are then performed based on these conditions. The se
stage should be kept running to update the neural netw
model and analyze the system until finding the desired p
formance.

According to the operator’s experience, a total of 14 tri
from the past historical data are initially provided. For mo
effective results, the etching characterization experime
generating experimental runs are statistically designed
starting point. The performance of the first run is shown
the three-dimensional space~OX U, OX E/R, and Poly E/R!
in column ~a! of Fig. 5. The cubic box is the design regio
The top view and side view plots are represented in colum
~b! and~c! in Fig. 5, respectively. We can see there is so
deviation from the desired target in the first batch of t
historical data. It seems that the suggested experiments
rather unsatisfactory results. Therefore, the proposed me
will demonstrate how to improve the result and get the
sired recipe.

A three-layer network is trained by the data obtained
the first run. For this application, the neurons of the inp
layer correspond to the five adjustable input parameters.
neurons of the output layer represent the three etching
sponses. Networks with one and two hidden nodes are
tially tested, respectively. They are not adequate as the
vergence is too slow and rms error remains high. Finally
network with three hidden nodes solves the problem. It
quires a total of 150 epochs to reduce the rms error to
acceptable level. The information induction analysis is u
to analyze optimal regions based on the response sur
from the neural network model. The change inU, TS, andF
with the number of clusters for the first batch is shown
Fig. 6. The information energy shows four clusters that r
resent four major optima should be performed if optimiz
tion is our concern. However, information entropy sugge
five experiments because the extra one helps us to mold
performance surface with more accuracy. Therefore, five
periments should be done in the next batch.

In Fig. 5, it is obvious that most of the new experimen
points are getting close to the target although they still h
not yet fallen into the desired region where the circles are
experimental data and the cross points represent the re
JVST B - Microelectronics and Nanometer Structures
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of the suggested new experiments. Repeating the same
vious procedures, the suggested experiments and prev
experiments done in the first batch are used to retrain a
neural network model. After information induction in th
second batch~Fig. 6!, four experiments are suggested to

FIG. 6. Information analysis plots at different batches.
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performed. In this new run, data are getting even close
the target. The recipe that meets both criteria is found~Fig.
5!. We keep another trial to find any chance for improv
ment. Although the performance of the experimental d
this time is still within the targeted area, there is no sign
cant improvement. That means the procedures of experim
tal design are finished. When making a comparison am
the information induction plots~Fig. 6!, we can see that the
information energy is high for all classes in the first batc
After several runs, both terms,TS and U, are decreased to
the smaller values for all classes. It indicates that the ne
network model is getting close to the system little by lit
with the new experiments added and the optimal region
getting explicit. Furthermore, the initial batches which do n
reach the required specifications are not wasted, because
provide information of the response surface that can be
corporated into the neural network model.

Within four generations and a total of 26 experimen
points, a recipe that meets all specifications is found. Ho
ever, the traditional two-level (25532) factorial design re-
quires at least 32 experiments to deal with these five in

FIG. 7. Cross-section SEM of SAS etching.~a! High pressure recipe withou
CO gas at Si loss.600 Å. ~b! Recipe with CO gas at Si loss;300 Å.
J. Vac. Sci. Technol. B, Vol. 17, No. 1, Jan/Feb 1999
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factors. Since it estimates the main effects and interaction
can only bring the path or direction for finding the optim
performance. Being modeled as a linear plan, it cannot e
mate a curvature in the response surface. If the three-l
factorial design (35) is used to estimate the degree of curv
ture in the response, a full three-level five-factor factor
design requires 243 experiments. Suppose a partial fact
design24,25 is run using the central composite design. For
three data points would be required to perform an init
search. This shows that the proposed method is the m
effective and efficient way for the etching process.

After the simulation is completed, topography wafe
have been through with the optimized process conditions
cross-section SEM analysis has been conducted. The re
confirm that the CO recipe could meet the predefined proc
criteria. In Fig. 7~a! the wafer is processed by a high pressu
regime recipe whose Si loss is still beyond satisfaction, a
Fig. 7~b! is the newly developed CO recipe which exhib
the minimum Si loss of;300 Å.

V. CONCLUSION

With the increasing use of neural networks in semico
ductor process modeling, a new application is developed
the authors. This novel technique integrates two element
artificial intelligence research for process experimental
sign. The neural network is used as a tool to summarize
experimental information into a mathematical model. Info
mation induction analysis is employed to determine h
many features are worth testing, i.e., finding possible optim
operating conditions. The information induction is deriv
from a fuzzy classification technique and information theo
The etching experimental design in this study demonstra
that run-to-run experiments can lead the process into the
sired etching characteristics within specified ranges. Besi
the proposed method in the semiconductor fabrication
reduce time, cost and risk of the product and process de
opment.
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