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The goal of this article is to use operating data-based approaches for automating the manufacturing
of submicron flash memory devices in semiconductor. This novel technique which combines the
neural network and information inductive analysis has recently been proposed. It is used in this
article to generate the recipe for plasma etching process design. Traditional plasma etching variables
such as pressure, gas flows, temperature, rf power, etc., are used to build the neural network for
predicting etching rate of polysilicon and field oxide, and the uniformity of field oxide. The
information inductive analysis based on the information entropy and fuzzy clustering analysis is
then utilized to look for the candidate points in each optimal region whose response surface is
constructed based on the neural network model. With only a few runs, the best optimal condition
getting close to the design requirements is found. Since the complexity of plasma modeling and
design at the equipment level is presently ahead of theoretical method from a fundamental physical
standpoint, the proposed method can effectively cope with nonlinear characteristics in the plasma
etching process, giving good design directions and taking advantage of traditional statistical
approaches. Using the proposed method within four runs and a total of 26 experimental points, the
recipe that meets all specifications is found. 1©®99 American Vacuum Society.
[S0734-211X9901901-7

[. INTRODUCTION ahead of the theoretical method from a fundamental physical
) ) » standpoint, many researchers have focused on the empirical
Over the last decade, intensive global competition among o nrqach to plasma modeling, like neural networks. In recent

semiconductor manufacturers has called for the need of ﬁn({?ears the number of applications of neural networks to etch-

ing a good recipe for innovative products. If a new producting process has increased dramatickifyResearch shows

ﬁannoidb% madtedjl:[ls;m time to me:at the needt|rzjthlf _marlke{hat neural network models exhibit superior predictive ability
it would be outdated of even no fonger wanted. 1 IS alS0,er traditional statistical methods and require less experi-
important that accelerating product design should be done 6rl'rt1ental training data. Literature that deals with the use of
the minimum costs without the expense of product quality. :

In the semiconductor field, plasma etching is regarded Critipeural networks to solve semiconductor fabrication problems

. k . . ._includes: the polysilicon film growth by low-pressure chemi-
cal to product quality. In this article, a novel technique that is itiofi th | of polvsili flm b
a combination of the neural network and information induc—Cal vapor d(_aposmo ,the removail ol polysiiicon Tim by
tive analysis is employed to generate the recipe for pIasmBIasma etching,the behavior of real-time reactive ion etch-
etching process design. N9 prqces§, ete. .
The proposed method can effectively cope with nonlinear Basically, a neural-network approach can save time and

characteristics in the plasma etching process, giving gooawoney. It also learns and extracts the process behavior from

design directions and taking advantage of traditional statistit® Past operating information. It can be used as a model for

cal approaches. Neural networks have demonstrated tHYOCesS optimization and control design. However, a large
strong capability of learning nonlinear and complex relation-2mount of data points is usually needed for training neural
ships between process variables without any prior knowledgB€tWwork models. It is not applicable to process design since
of system behavior. This particularly fits the highly complex only the data located at the optimal design region are critical
process of plasma etching. Since the complexity of plasméo building the neural network model. In order to reduce the

modeling and design at the equipment level is presenth@mount of training data, a random search is utilized to look
for the possible optimal regions. The information inductive

aTo whom correspondence should be addressed; electronic mail: f’malySiS b"flse_d on the information en_tmpy and fuzzy CIu_ster-
jason@wavenet.cycu.edu.tw ing analysis is employed to determine the good candidate
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points at each optimal region. The information inductive
analysis is regarded as a response surface management strat-
egy for constructing and updating the neural network model.
Therefore, further experimental runs should be done to verify
those candidates and update the neural network model. With
only a few runs, the best optimal condition which is getting
close to the design requirements is found.

In this study, the proposed method is applied to the self-
aligned sourcgSAS) process technology Etching is per-
formed on a test structure design to facilitate the simulta-
neous measurement of the etching rate of polysilicon and
field oxide, and the uniformity of field oxide. The first two
variables are required for etching selectivity. The most im-

portant parameters during the design process are rf power, Plasma Radicals

chamber pressure, bottom electrode temperature, CO flow,

and Ar flow. The CO gas is considered as one of the candi- ‘ ¢ i ¢ i ¢ i i
dates because it can help improve the oxide etching selectiv-

ity to silicon. The most challenging etching process in the

SAS field oxide dry etching process is that the silicon sub-
strate is exposed in the plasma environment during the etch- Si Si Si Si

Ir_lg process._ This is different from the_z_conventlonal C_Ontacﬁzle. 1. In SAS etching process, Fox represents field oxide and Si is silicon.
via dry etching process where the silicon substrate is pro-
tected by dielectric film until the end point is approached.

Through this study, the proposed method not only exhibitssching selectivity of Si@to silicon substrate. Test patterns
superior accuracy and effectiveness but also utilizes less €y fabricated on 6-in.-diameter silicon wafers. Current oxide
perimental points when searching for the desired recipe. g sjlicon selectively performance of the CKHEF, chemis-
This article is organized into five sections. In the NeXtyry pased reactive ion etofRIE) mode oxide etcher ranges
section, the SAS process is introduced. Section Il explaingom approximately 15 to 1. According to the literature
the core of the proposed experimental design. Experimentgj, a1 selectivity is primarily determined by the C/F ratio in
study and discussion are addressed in Sec. IV. Section Me etchant chemicals. The increase of the C/F ratio can im-

gives concluding remarks. prove the selectivity of oxide to silicon, so CO gas has been
considered as one of the factors which can help improve the

Il. SELF-ALIGNED SOURCE ETCHING PROCESS oxide etch selectivity to silicon. Besides CO flow, the other

CHARACTERIZATION critical parameters in this recipe design including rf power,

In th ¢ ) t submi flash devi chamber pressure, bottom electrode temperature, and Ar flow
n the manufacturing of submicron flash memory devices, ;i yetermine the oxide to silicon selectivity. In order to

the SAS process technology is adopted. By using the SAg_cquire the process data, an etching monitoring system trans-

design and process, the shape of the source or drain regionf?rring data from the RIE chamber onto a workstation has
made so straight that there is no variation in the couplingDeen designed and implemented. LAM Research RIE mode
ratio. By minimizing.th(_a vqriation in coupling ratio, the tigh.t 4520 single-wafer parallel—plate system operating at 400
threshold voltage distribution after the program and erasing - is chosen as the plasma etching tool in this study. The

operation can thus be achieved. patterned wafer with the deposition of Si@nd polysilicon

The SAS field oxide dry etphing process js the mOSt_ghalis etched for 30 and 120 s, respectively. The remaining thick-
lenging etching process. As illustrated in Fig. 1, the silicon

) ) - ness of the oxide and polysilicon before and after plasma
substrate has been exposed in the plasma environment SiNgRhing are measured by PROMETRIX FT-750 film thick-

the etchi_ng process started. The S’_A‘S _field oxide dry e_tChinﬂess probe system on specific pattern opening area. The five
process is supposed to meet the criteria of both removing thﬁ"uput factors and their corresponding range of operation are

field oxide effectl_vely and sustain minimum am?unt of sili- ¢ own in Table I. The etching process in this study is repre-
con loss. According to the device memory cells’ data reten-

tion performance data, the silicon loss should be controlled
at the level of less than 30 nm. In order to maintain reason¥asLe |. Operation ranges of input variables.
able oxide etching ratéhroughput concepnand control the

silicon etching rate to minimize silicon loss, the oxide etch- Variable Range Unit
ing recipe’s selectivity of oxide to silicon on the patterned Power 700-900 w

wafer should be maintained at the level of greater than 30. Pressure 200-300 mTorr
Etching is performed on a test structure design to facili- BoUo™ electrode temperature —20-+10 c

. . . CO gas flow 100-300 sccm

tate the measurement of the etching rate/uniformity of poly- A gas fiow 100-300 scem

silicon and SiQ. These data are required to determine the
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sentative of a typical plasma etching fabrication used for IC

processes. _ _ _ ~ perimental values. Once trained, each neural network repre-
~ The objective is to find a recipr an operating condi-  sents a nonlinear or complex function for the output that it
tion) that satisfies the following specifications: learned*>*® The major advantage is that the network is de-

) . . . rived from the data presented instead of the exact form of the
etching rate of field oxidéOX E/R)>4000 A/min, (1) analytical function on which the model should be built.
However, for general statistical models, a prior choice cannot
uniformity of field oxide(OX U)<5%, (2)  be assumed for the functional form. Moreover, a small num-
ber of experiments may not be enough to develop approxi-
etching rate of polysilicofiPoly E/R<100 A /min, (3)  mation to the function. The neural network is ideally suited
to semiconductor process modeling mainly because of the
ability to directly learn the input—output relationships.
The process under consideration in this study is etching of
1. INTEGRATION OF NEURAL NETWORK AND the field oxide in a CO-and-Ar plasma. There are five rel-
INFORMATION INDUCTION evant input parameters: rf power, chamber pressure, bottom

An optimal experimental design architecture that inte-électrode temperature, and the flow of the two gases. The
grates the neural network and information induction isresponses of interest to be controlled are the etching rate of
implemented for SAS proced§ig. 2). The past operating the polysilicon(Poly E/R, field oxide (OX E/R), and the
data are collected for the feedforward neural network mode¥niformity of field oxide(OX U). They are functions of the
to predict plasma system behavior. The information inducprevious five input variables. The ability of the neural net-
tive tool is used to extract and suggest the new manipulate@ork to learn the relationships between the five inputs and
conditions. It also maintains the desired process variables #ree outputs is attributed to the multiple parallel processing
the desired region, such as etching rate or uniformity, for theunits that are interconnected to each other and the weight of
next run. The main advantage of the control of the plasmahe connection that stores the experimental knowledge. The
variable is adjusting the manipulated parameters that argtructure of a network in this study composed of three layers
more directly related to etching characteristics. Additionally,is shown in Fig. 3. In the plasma etching application, the
the integrated approach provides etching modeling and prdnput layer of neurons receives external information corre-
cess information both during and between process run-tgsponding to the five adjustable design parameteds,
run. The entire methodology is described in our previous=[x}, ... xE]. The output layer transmits information to
work. For a detailed coverage, see Ref. 11. the outside world, corresponding to the predicted controlled
or response variable@n this case, the etching rate of the
polysilicon and field oxide, and the uniformity of field ox-

Neural networks are a recent development in the field ofde), y*=[y%, ... y§]. The input and the output compo-
plasma etching. They can learn the arbitrarily complex, nonnents of thepth data pair are defined HxP,yP}. The hidden
linear relationship between inputs and outputs. By trainindayer composed oN,, neurons can be considered as repre-
the net, the back-propagation algorithm reduces the differsentation in the fundamental physical characteristics of
ence between the neural network output and the actual exlasma. Its output is given by

where uniformity is calculated by max/min.

A. Modeling using neural network
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hj(xp)=i§1 wixP+bl', j=12,... Ny, €)

and the response output is given by .
1000~

3 & e ! A\
JuP) = 2, wiZlh )]+ by, j=1.2.3, (5) ol “‘ b
’ i,

wherewy; andwj; are the weights between the output and _ g - ‘\\\\\“‘\\\“‘\““‘0‘0’0""
the hidden layers and the weights between the hidden and th % \ ‘}x\\\\\t‘\\\:@:‘”,‘%/"l,' S o
input layers, respectivelypy and bJh are the biases in the & 4]\ \“ \x“‘\‘33“33“3“3‘%3':'4'4"0',"'0,.. M
hidden layers and the output layers, respectively, zisd¢he \\ \“\\‘&‘3}‘}:“3\\:3‘3;&::%%/7;1’[[I‘IIIIIII[”[Ilﬁ’///
output in the hidden layer. The hyperbolic tangent activation | .-\ RS ""“"""""';/,2%’/”’,%%%%’4//’
function is used in this studf The sum square erroE, \ /,%’422’5‘,2‘,’!%’,%1,’,;’/ ;
which represents the error between the predicted and targete 4

values is employed to evaluate the performance of the net
work:

P 3

1 N
E=52 2 [ = 9)T, (6)
p=1k=1

whereP is the number of experimental data.

In this study, the pseudo-Gauss—Newton method
algorithmt>®is used for training. Note that the network has
no fixed topology. That is, the number of hidden neurons
varies, depending on the desired network performance. Cros
validation is used when training and testing the neural net-
work. Due to the small quantity of the experimentahin-
ing) data available, a statistical technique called the leave-
one-out (LOO) cross-validation scheme is used to
overcome the possible overfitting or bias introduced by rely-
ing on any particular division into testing and training sets.
This is an attractive vehicle for generalization assessment o
a neural network model. Although it is computationally ex-
pensive, time loading is not very heavy due to the small
experimental data used in this study.

B. Decision making based on information induction

In this information induction step, it contains two mod- :
ules:regional optimal searctandfuzzy information analysis EEE 0 1 2 3 4 5
The purpose of this step is to create some optimal regions i
and possible optimal operating conditions based on the neue. 4. Optimal-search algorithna) The function of two variables has four
ral network model generated in the previous step. local minima. (b) The optimal regions are found based upon the search
The first moduleregion optimal searchextracts features results. The background shows the contour of the original model.
from the previously built model. In product and process de-
velopment, the feature of interest is the condition that satis-
fies the desired optimal operation. However, multiple local
optima are frequently encountered. It is often necessary t0Z,x;,X,). The optimal regions generated by the optimal
rate alternative local optima based on secondary objectivesearch against the contour background of the neural network
such as robustness, safety, etc. Therefore, nongradient baseddel are depicted in Fig.(d).
search procedure, like random search or genetic In reality, it is impossible to perform experiments at all
algorithm!®1° should be used. It should be pointed out thatthe points in all the optimal regions. The secondary module,
this module is what we do with this population. Therefore,fuzzy information inductignis proposed here to select the
the optimal regions can be gotten. Figuf@dhows that the most representative candidate points. Then the experiments
representation of the performance surfa¢g,,x,) of a neu-  will be performed only at those candidate points. The fuzzy
ral network model is built for the experimental data information induction technique is composed of the fuzzy
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classification and information analysis for classifying thewhereS(c') is the entropy of classification for theh cluster
possible optimal regions. andp(x¥|c') is the probability of finding<* as a representa-

The fuzzyc-means(FCM)?%2tis used here for classifica- tive of the ith cluster, i.e.,p(x|c')= (ui/N;) and N;
tion. The purpose of the clustering process is to distill azE{z':l,uik. Equation (10) gives weighted average of the
certain number of homogeneous clusters or classes from entropies for each class. The weights are obtained by divid-
large data set and to classify concise representation of thieg the sum of the fuzzy values found in tit@ cluster by
individual local optimal behavior. With the preset number of their total. Note that the value of this total equals the number
clusters performing FCM, the degree of its memberghip  of points in the whole optimal regions. Therefore, the en-
can be obtained to characterize the data point as being, toteopy of the entire classification set can be defined as
greater or less degree, a member of the appropriate cluster.

The data points for each class also correspond to the cluster c N C

centerc. Here, ui is a fuzzy membership which measures  S(C)= > 2 minui— 2 NiInN; | (11)

the degree of association of tkéh data poinix* with theith ket =t

cluster class and' is the center of théth cluster. In the above equation, the first term of the right-hand side,

In general, more classes can help clarifying the picture ofwix In wi, represents the penalty of overlapping between
classification. However, additional classes increase our bugroups. If the data points belong to one graup., ujx—1
den since we have to perform test experiments at each clugnd u;—0, i#]), the contribution of these data points to
tering center. The more classes we use, the more experimeritie first term is negligible. On the other hand, if the data
we need to perform. Our goal is not to produce the crispiespoints belong to a large number of groups, will be non-
classification but to locate optima as quickly as possiblezero for several groups and the terpay In wy, becomes
Hence, an information induction is used to determine thesignificant. The second term of the right-hand side is a mea-
optimal number and location of the next set of experimentssure of the size of each cluster. The smaller the clusters are,
The information analysis technique is based on the concejibe larger and more orderly the entropy is. Note ®Bat0 at
of entropy and predicted performance for classifying the posC— N. However, the increase in entropy with the increased
sible optimal regions. The entropy measures how well a sgtumber of clusters is offset by how clearly we can divide the
of cluster means classifies the data points, and energy meéata into groups.
sures how well a set of cluster means performs if it is chosen In order to avoid the issue of order of magnitude differ-
as the next set of experiments. The composite informatio®nce betweet) andS, a proper scaling normalization factor,

formula is defined: T, in the Eq.(7) is added to the energy term:
F=U-TS (7) fmax_fmin
T= N (12

This equation is balanced by three terms: information en-
ergy, U, information entropyS and normalization factoff. ~ where f, is the maximumf of all surviving points in the
The information energylJ, which is just the expected regional optimal search. During the procedure of determin-
value of the performance index is defined: ing the number of clusterd, remains constant. This is analo-
gous to the thermodynamic equilibrium criterion under iso-
thermal condition that the free energy is minimized. During
U= E lf[y(c)] foo (8) the initial phase of _the se_arch, the data are relati\_/ely_ scat-
tered andf . fmin iS relatively large. The information in-
duction places more emphasis on obtaining the shape of the
where f ;i is the value of the minimuni recorded in the performance relation rather than finding the optimum. As the
optimal search an@i[y(c')] is the performance index evalu- data accumulate with more new experiments, the result of
ated at the cluster centers. The information energy isa meQeg|ona| 0pt|ma| search will concentrate toward g|0ba| op-
sure of the relevance of the messages generated by the clygna, f max— fmin Would decrease. Emphasis should be placed
tering analysis to the optimization procedure. less on categorizing information and more on optimization.

The concept of entropys, is used to measure the purity By finding out the desired class and its center, we can deter-
of a class, i.e., the distribution among the classes of thenine the optimal operating points.

process variables within the set. The fuzzy entropy of
classification which stems from the concept of Shanon’s
entropy®?3can be calculated from C. Feedback testing

Based on the class center from the information induction,

iy _ K| A K| A the final step, feedback control, can suggest changes in the
S(©) g’x POC|e)IpOC]C) ], © input parameters and see if the output performance is im-
proved. The process we are controlling may drift rapidly due

c to changes in the process. When this occurs, the optimal
S(C)=E M : (10) operating point specified by the information induction may
i not produce the best desired output. At this point, it may be

JVST B - Microelectronics and Nanometer Structures
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Fic. 5. Optimal etching process design at different batct@sarget deviation plots for the curref®) and the pasto) experiments(b) Top view of (a) from
OX U and Poly E/R directiondc) Side view of(a) from OX E/R and OX U directions.

necessary to conduct new experiments to regenerate the neet wasted in each run because they provide information
sponse surface and classification information induction. Thevhich is incorporated into the neural network model for the
iterative procedures keep running until the desired perfornext system analysis.

mance is found. Please note that all experimental points are The advantages of the integrated neural network and in-
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formation induction in the experimental design are resumma-
rized here. The neural network is used to build a model
based on the plasma variables directly related to etching
characteristics and the information induction analysis is to
determine the best possible operating conditions for testing.

IV. EXPERIMENTAL RESULT AND DISCUSSION

The development of an optimal operating condition of
field oxide etching consisted of two stages. In the experimen-
tal stage, some experiments are performed to collect the rel-
evant measurement parameters which can represent the char-
acteristics of the etching process. The next stage is to analyze
the etching data gathered from these trials. Those data are
used to train neural network based process models. Informa-
tion induction design is subsequently employed to determine
the possible optimal operating conditions. New experiments
are then performed based on these conditions. The second
stage should be kept running to update the neural network
model and analyze the system until finding the desired per-
formance.

According to the operator’s experience, a total of 14 trials
from the past historical data are initially provided. For more
effective results, the etching characterization experiments
generating experimental runs are statistically designed as a
starting point. The performance of the first run is shown in
the three-dimensional spa@®@X U, OX E/R, and Poly E/R
in column (a) of Fig. 5. The cubic box is the design region.
The top view and side view plots are represented in columns
(b) and(c) in Fig. 5, respectively. We can see there is some
deviation from the desired target in the first batch of the
historical data. It seems that the suggested experiments yield
rather unsatisfactory results. Therefore, the proposed method
will demonstrate how to improve the result and get the de-
sired recipe.

A three-layer network is trained by the data obtained in
the first run. For this application, the neurons of the input
layer correspond to the five adjustable input parameters. The
neurons of the output layer represent the three etching re-
sponses. Networks with one and two hidden nodes are ini-
tially tested, respectively. They are not adequate as the con-
vergence is too slow and rms error remains high. Finally, a
network with three hidden nodes solves the problem. It re-
quires a total of 150 epochs to reduce the rms error to an
acceptable level. The information induction analysis is used
to analyze optimal regions based on the response surface
from the neural network model. The changednTS, andF
with the number of clusters for the first batch is shown in
Fig. 6. The information energy shows four clusters that rep-
resent four major optima should be performed if optimiza-
tion is our concern. However, information entropy suggests
five experiments because the extra one helps us to mold the
performance surface with more accuracy. Therefore, five ex-

periments should be done in the next batch. of the suggested new experiments. Repeating the same pre-
In Fig. 5, it is obvious that most of the new experimentalvious procedures, the suggested experiments and previous
points are getting close to the target although they still havexperiments done in the first batch are used to retrain a new
not yet fallen into the desired region where the circles are oldveural network model. After information induction in the
experimental data and the cross points represent the resukecond batcliFig. 6), four experiments are suggested to be
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(a) factors. Since it estimates the main effects and interactions, it

S i can only bring the path or direction for finding the optimal

:ﬂ ‘m et ; | performance. Being modeled as a linear plan, it cannot esti-
$@1 MEMORYICELL.

mate a curvature in the response surface. If the three-level
factorial design (8) is used to estimate the degree of curva-
ture in the response, a full three-level five-factor factorial
design requires 243 experiments. Suppose a partial factorial
desigri*?®is run using the central composite design. Forty-
three data points would be required to perform an initial
search. This shows that the proposed method is the most
effective and efficient way for the etching process.

After the simulation is completed, topography wafers
have been through with the optimized process conditions and
cross-section SEM analysis has been conducted. The results
confirm that the CO recipe could meet the predefined process
criteria. In Fig. 7a) the wafer is processed by a high pressure
regime recipe whose Si loss is still beyond satisfaction, and
(b) Fig. 7(b) is the newly developed CO recipe which exhibits
the minimum Si loss of~300 A.

V. CONCLUSION

With the increasing use of neural networks in semicon-
ductor process modeling, a new application is developed by
the authors. This novel technique integrates two elements of
artificial intelligence research for process experimental de-
sign. The neural network is used as a tool to summarize all
experimental information into a mathematical model. Infor-
mation induction analysis is employed to determine how
many features are worth testing, i.e., finding possible optimal
operating conditions. The information induction is derived
PP, B from a fuzzy classification technique and information theory.

§Y122@ 1S5.@kV X5@.8k ''6benm The etching experimental design in this study demonstrates

that run-to-run experiments can lead the process into the de-

Fic. 7. Cross-section SEM of SAS etchirig) High pressure recipe without  sired etching characteristics within specified ranges. Besides,
CO gas at Siloss-600 A. (b) Recipe with CO gas at Si loss300 A. the proposed method in the semiconductor fabrication can
reduce time, cost and risk of the product and process devel-

performed. In this new run, data are getting even closer gpment.
the target. The recipe that meets both criteria is fo(Fig.
5). We keep another trial to find any chance for improve-ACKNOWLEDGMENTS
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