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In practice, model predictive control is commonly based on a dynamic black-box model. For
linear systems, the model is frequently based on either a process system’s impulse response or
step response. For nonlinear cases, many works have used an artificial neural network (ANN).
The quality of the data set used to construct the ANN model is a critical issue. In this work, we
present a systematic approach for designing the data set based on information theory.
Information entropy is derived to identify the mutual positions among data points in all feasible
regions. In addition, information enthalpy is derived to obtain a system’s dynamic nonlinearity.
Hence, the placements of the new data are designed on the basis of a compromise between the
information entropy and the information enthalpysthe information free energy. Also included
herein are realistic examples such as pH control. Simulation results demonstrate that the
proposed approach is highly promising in terms of obtaining a reliable black-box model, such as
ANN, for model predictive control.

1. Introduction

Developing a nonlinear empirical black-box model for
model predictive control (MPC) has received extensive
interest, with notable examples including an artificial
neural network (ANN)1,2 or a rule-based model.3,4

However, to our knowledge, the data that comprise the
black-box model have never been investigated. There-
fore, in this work, we develop a systematic approach,
i.e., the information free energy design (IFED), to
experimentally design a dynamic system. The proposed
IFED considers the distribution of the data in the
feasible region and the topology of the dynamic system
such that the black-box model can accurately predict
the system’s dynamic behavior well.

Linear model predictive control has been successfully
employed in process industries in recent decades. A
“good” model must be obtained through plant tests to
implement this control scheme. Step response models5

and impulse response models6 have been implemented.
In this area, all applicable approaches are based on
nonphysical meaning models or so-called black-box
models. Garica and Morari7 thoroughly reviewed the
linear model predictive theory, including parametric and
nonparametric models. Only nonparametric models,
e.g., dynamic matrix control (DMC), are implemented
in most industrial processes.

Theoretical development of nonlinear model based
control has not yet been mature. Jang et al.8 extended
linear MPC to the nonlinear area using physical models.
Their investigation assumed that a physical model, with
some unknown parameters, can be obtained through
material and energy balances. In addition, the un-
known parameters can be identified on-line. However,
in most cases, obtaining the physical meaningful model
is relatively difficult. The feasibility of applying black-
box models such as ANN has received increasing at-
tention. In process control, implementing such a model

for model predictive control is common practice. Our
previous works3,4 directly implemented the dynamic
data set of processes as the process model. In addition,
numerous attempts have been made to implement back-
propagation networks9 or recurrent neural networks10

for nonlinear MPC. Most works implement a one-step-
ahead ANN model in the area of MPC, but some works
implement a multistep ANN model rather than the one-
step-ahead model.1,11 However, of paramount concern
is that, for linear MPC, many systematic experimental
approaches ensure the qualities of the black-box model,
such as DMC. However, no such technique is available
for nonlinear systems. Therefore, in this work, we
present a systematic approach to ensure the quality of
the ANN model.

Experimental design for general systems is essential
for product developments. Statistical approaches, with
strong theoretical backgrounds, are frequently imple-
mented for such developments. However, for nonlinear
systems, many useful statistical theories cannot be
implemented. Our recent work12 applied ANN toward
experimental design. However, that work focused only
on obtaining high-quality products using the least
possible number of experiments. In this work, we
construct a reliable model for model predictive control.
In this case, reviewing the complete topology of the plant
dynamics is highly desired.

In developing a trustworthy plant dynamic ANN
model, this work assumes the notion that a temporary
ANN can be constructed on the basis of the available
experimental data set. Newly designed experimental
data can be developed using that temporary ANN.
Reviewing the complete plant dynamic topology involves
attaining the largest possible feasible boundaries of the
process dynamics based on the limited available current
data. Substantial development has recently been made
in Delaunay triangulation, which was originally devel-
oped in the 1970s.13 The Delaunay triangulation algo-
rithm triangulates the arbitrary plane domain. A
convex hull of existing points can be recognized through
the triangulation. This approach has recently been
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extended to 3-D triangulation14 and other nonconvex
pattern representations.15

Shannon16 derived information entropy to measure
the uncertainty of a random variable. Hence, evaluat-
ing the quality of an ANN model hinges on implement-
ing the information entropy.17 In this work, we imple-
ment the information entropy to measure the uncertainty
of a possible event in the black-box model. Also derived
herein is the information enthalpy to measure the
“nonlinearity” of a possible event. The optimal place-
ments of the experiments therefore depend on the
compromise of the above entropy and enthalpys
information free energy.

The pH control system has been widely discussed
among chemical process control researchers due to its
severe nonlinearity. In most cases, PID controllers do
not function properly in these systems. Many works
concentrated on model predictive control of pH plants
using a complete first principle dynamic model18 or
partial plant knowledge adaptive control.19 Proll and
Karim20 implemented a nonphysical meaning polyno-
mial model to perform model predictive control of a pH
system. Pottmann and Seborg21 implemented an ANN
model to perform on-line model predictive control of a
pH plant. In this work, we select a detailed, simulated
pH plant, derived and tested by Hensen and Seborg,18

as an example. According to our results, IFED is highly
promising for developing a dynamic ANN model for the
purpose of nonlinear model predictive control for this
pH process.

The rest of this paper is organized as follows. Section
2 presents the problem statement and formulation.
Section 3 provides the development of information free
energy. Section 4 presents the algorithm of the infor-
mation free energy experimental design and the De-
launay triangulation of the feasible region. Numerical
examples, including a realistic pH control system, are
illustrated in section 5. Concluding remarks are finally
made in section 6.

2. Problem Statement

A dynamic model predicts the plant output in the
future using the past trajectories of input and output.
Assume that a single-input-single-output (SISO) dy-
namic system can be discretized as follows:

where n and m denote the output and input orders of a
dynamic system, respectively. A standard model pre-
dictive control problem, given a dynamic model (1), can
be formulated as the following:

where ŷk+j ) yk+j - ỹk+j, yk+j is the on-line measurement,
ỹk+j is the model output, yd,k+j is desired system output,
p e q, such that uk+p ) uk+p+1 ) ... ) uk+q-1, and æj
and γj are weightings of the objective function. The

numerical solution of (2) is easy, as discussed in our
previous paper.8 However, the key issue is the develop-
ment of a reliable dynamic model (1). This work is
aimed at obtaining an ANN model based on a systematic
approach. A multi-input-multi-output (MIMO) model
predictive control is a much more complicated control
problem than a single-input-single-output (SISO) pro-
cess system. In this work, only SISO examples are
discussed. Notably, the approach derived here is also
useful for determining a MIMO model.

Define θ

as an event of the dynamic space. Also, since yk+1 is
uniquely determined by (1), we denote the following
corresponding augmented event:

Notably, determining n and m is a nontrivial task. This
issue has been addressed in our previous work3 as well
as others.22 For simplicity, we assume that n and m in
(1) have already been determined.

The experimental design attempts to determine func-
tion f in (1), implicitly by a black-box model, e.g., ANN.
Figure 1 depicts the inputs and output of the black-box
model. Given a set of testing data

Herein, we attempt to find a set of training data for
the black-box model

Figure 1. Inputs and output of an ANN model presenting the
system dynamics of a SISO plant.

Figure 2. Delaunay triangulation and convec hull: (a) - - -,
Voronoi polygon; s, Delaunay triangulation; circled plus, given
data points; (b) s, convex hull; circled plus, given data points.

θ ) (uk, yk-1, ..., yk-n, uk, ..., uk-m) (3)

x ) (yk+1, yk, yk-1, ..., yk-n, uk, ..., uk-m)

Ψ ) {xi ) (yk+1
i , yk

i , ..., yk-n
i , uk

i , ..., uk-m
i )|i)1,...,M} (4)

Ω ) {xi ) (yk+1
i , yk

i , ..., yk-n
i , uk

i , ..., uk-m
i )|i)1,...,N} (5)

yk+1 ) f(yk,yk-1,...,yk-n,uk,...,uk-m) (1)

Min
uk+1,uk+2,...,uk+p

∑
j)1

p

æj(ŷk+j - yd,k+j)
2 + γj∆uk+j

2

s.t. (1)

umin e uk e umax

|∆u| e ∆umax (2)
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such that function f in (1) can be determined and the
following objective function can be minimized:

where i ) 1, ..., M. That is, the prediction error of the
process output can be minimized in the testing set. In
here, the following constraints are implemented due to
the limitations of the control resources.

Since the control actions are subjected to (7) and (8),
the output states cannot go anywhere. The output must

be bounded, and these bounds are functions of the
previous state. Therefore, designing the training set is
also subjected to the following constraints:

where i ) 0, 1, 2, ..., m - 1, j ) 1, 2, ..., n - 1. Herein,
we denote the following feasible event set:

However, the feasible event set is continuous and
impossible to obtain numerically. In this work, Φ can
be more feasibly approximated by discretizing the
possible event set as follows:

where 1 e I0, I1, ..., In, J0, J1, ..., Jm e Q. The total
amount of the approximate feasible events can be
determined:

The optimization problem cannot be directly solved
unless the dynamic model (1) is attained. The following
sections provide another means of solving this experi-
mental design problem. It should be noted that the
determination of a feasible set depends on the deter-
mination of functions h and h′ in (9) and (10). However,
h and h′ cannot be explicitly obtained due to the lack of
plant knowledge. In this work, h and h′ are implicitly
found by implementing the existing data set Ω and the
approach of Delaunay triangulation as described in
section 4.1.

3. Development of Information Free Energy
Design (IFED)

3.1. Information Entropy. Shannon16 first derived
information entropy. The information entropy of a

Figure 3. Computer flowchart of IFED.

∑
i)1

M

(yk+1
i - ỹk+1

i )2

s.t. ỹk+1
i ) f(yk

i , yk-1
i , ..., yk-n

i , uk
i , ..., uk-m

i ) (6)

umin e uk-i e umax (7)

|∆uk-i| e ∆umax (8)

Figure 4. 3-D plot and the contour of the dynamic model of
example 1.

yk-j,max ) h(yk-j-1) (9)

yk-j,min ) h′(yk-j-1) (10)

Φ ) {x|x ) (yk+1, yk, ..., yk-n, uk, ..., uk-m), x satisfies
(1), (7), (8), (9), and (10)} (11)

Φ′ ) {xI0,I1,...,In,J0,...,Jm
|xI0,I0,...,In,J0,...,Jm

)

(yk+1, yk
I0, ..., yk

In, uk
J0, ..., uk

Jm), xI0,I1,...,In,J0,...,Jm
∈ Φ} (12)

P ) Qn+m
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discrete random variable Z taking value of z is defined
by

where p(z) denotes the probability density of the event
Z ) z. If Z only takes narrow values, then p(z) is close
to 1; for other values of Z, p(z) is close to zero. In this
case, S(z) is close to zero. If Z can take many different
values in each time with a small p(z), then S(z) becomes
a large negative value. In the case of a continuous
random variable Z, the information entropy for this
event can be determined:

Given existing experimental data x1, x2, ..., xi, ..., xN ∈
Ω, we denote the following probability measure of
uncertainty of an event x ∈ Φ:

where u denotes the model prediction of f(θ) and takes
the value from -∞ to ∞ and

denotes the standard deviation of the Gaussian distri-
bution of the random variable x, where µ(x|xi) is a fuzzy
membership measure of event x belonging to experi-
ments xi. Here, we assume that µ(x|xi) ) µ(d ) |x -
xi|); i.e., the membership function is only a function of
distance between the possible event and the experi-
ments. A nearer event to an experiment takes a larger
membership, as suggested in the appendix. Geometri-
cally, the probability distribution of a possible event x
∈ Φ becomes “sharper” if more experiments performed
are nearby. Correspondingly, the information entropy
for a possible event can be determined as follows:

Now, the total information entropy for all events in the
approximate possible event set Φ′ can be determined:

According to the definition of information entropy, the
events in Φ′ are more “certain” if the total information
entropy is maximized by the design of the training set
Ω. However, the information entropy only analyzes the
positions of the training data set Ω; i.e., the maximiza-
tion of information entropy attempts to place the
experimental points in proximity to where the training
data are “sparse”.

3.2. Information Enthalpy. In this work, we
denote the “gain variation” of the temporary ANN model
as the information enthalpy measure for an event x ∈
Φ. The nomenclature “enthalpy” is adopted herein to
correlate with the nomenclature “information entropy”

derived in a previous investigation.16 Assume that an
implicit relation f̃ between the input and output sets
can be determined using the existing training data set:

Then, for all events in the feasible event set, x ∈ Φ, the
following information enthalpy measure is defined:

Figure 5. Entropy-based experimental design of example 1. (a)
The placements (×) of the experimental data. (b) The total entropy
of the elements of Φ′ vs number of experiments. (c) The total
prediction error of the ANN model to the elements of Φ′ vs total
number of experiments, where the symbols (+) are the initial data.

yk+1 ) f̃(yk,yk-1,...,yk-n,uk,...,uk-m) (19)

H(x) ) norm( ∂
2f̃

∂yk
2
, ∂

2f̃
∂yk-1

2
, ..., ∂

2f̃
∂yk-n

2
, ∂

2f̃
∂uk

2
, ..., ∂

2f̃
∂yk-m

2)/
(1 + 1

σ2) (20)

S(Z) ) ∑
z

p(z) ln[p(z)] (13)

S(Z) ) ∫-∞

∞
p(z) ln[p(z)] dz (14)

p(u) ) 1
x2πσ

e-|u-f(θ)|2/2σ2
(15)

σ2 )
1

∑
i)1

N

µ(x|xi)

(16)

S(x) ) ∫-∞

∞
p(u) ln p(u) du ) -

ln(2πσ2)
2

(17)

S ) ∑
i)1

P

S(xi) (18)
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where σ2 is denoted as in eq 16. Then, for all points in
xi ∈ Φ′,

According to (20), geometrically, the event that the
change in the gradients of outputs to inputs is larger
implies that the information enthalpy measure for the
event is also larger. Therefore, we perform experiments
in these places since a black-box model is nothing but a
“nonlinear approximation” to a real plant model (1). An
experiment on a “nonlinear” place will also efficiently
decrease the total information enthalpy (21). Therefore,
the objective of minimization of (21) is equivalent to
finding the “nonlinear” place of the approximate model
f̃ if there is no point at that place. The term 1 + 1/σ2 in
(20) is to include the effect of existing nearby experi-
ments.

3.3. Information Free Energy. The placement of
a newly designed experimental data attempts to make
all possible events more “informative”. However, if the
plant nonlinearity is significant, more experiments
should be performed in such areas. Therefore, we not
only want to maximize the information entropy but also
want to minimize the information enthalpy. The fol-
lowing free energy should hence be minimized:

where T denotes the information temperature. The
experimental data set is initially assumed to be rather
“sparse”. Plant dynamics cannot be accurately pre-

dicted by (19) at that time. The information tempera-
ture should be extremely high and, therefore, we only
implement the information entropy rather than infor-
mation enthalpy. As more experimental data are ac-
cumulated, the information temperature should be
lower since the plant model becomes much more ac-
curate. This phenomenon closely resembles the concept
of simulated annealing development in thermodynam-
ics.23 The following definition of information tempera-
ture is hence derived:

where N denotes the total number of experiments, as
defined in (5). The initial temperature, T0, reflects how
sparse the initial training data set is. If the initial data
are not uniformly spread in the feasible region, we
recommend that T0 should be large. Otherwise, if the
initial data set is already uniformly spread in the
feasible region, then the initial temperature can be
small. In other words, the information free energy
design implements the information entropy initially if
the initial training data set is sparse. In addition, c and
z are tuning factors. Further details can be found in
Jang et al.23 In this work, c and z are set to be constants
in all three examples in section 5.

4. Information Free Energy Experimental
Design for Dynamic Systems

4.1. Initial Model and Feasible Region Buildup.
Consider a dynamic system (1), in which it is reasonable

Figure 6. Enthalpy-based experimental design of example 1. (a) The placements (×) of the experimental data. (b) The total enthalpy of
the elements of Φ′ vs number of experiments. (c) The total entropy of the elements of Φ′ vs total number of experiments, where the
symbols (+) are the initial data.

H ) ∑
i)1

P

H(xi) (21)

G ) H - TS (22)

T(N) ) T0 exp(-cN1/z) (23)
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to assume that the training data set Ω0 is initially a
nonempty set if the plant has been operated for a while.
If Ω0 is empty, then a random input sequence such as
a pseudorandom binary sequence (PRBS) can be gener-
ated to obtain a “fair” initial training data set Ω0.
However, the PRBS training data set is good only for a
linear system.24 In nonlinear systems, the initial data
set generated by PRBS cannot be used for constructing
a black-box model that can be used to predict the output
yk+1 by (1). The feasible region can be roughly obtained
by the following approach.

Current state yk is bounded by the previous state yk-1
due to the limited control resource:

The above functions h and h′ cannot be obtained
explicitly due to the lack of plant knowledge. However,
these functions can be found by the following Delaunay
triangulation.

Figure 7. IFED experimental design of example 1. (a) The placements (×) of the experimental data. (b) The total entropy of the elements
of Φ′ vs number of experiments. (c) The total enthalpy of the elements of Φ′ vs total number of experiments. (d) The total information free
energy of the elements of Φ′ vs number of experiments. (e) Information temperature vs number of experiments. (f) The total prediction
error of the ANN model to the elements of Φ′ vs total number of experiments, where the symbols (+) are the initial data.

yk,max ) h(yk-1) (24)

yk,min ) h′(yk-1) (25)
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In light of the initial data set Ω0, the Delaunay
triangulation25 proposes that all points {x1, x2, ..., xk,
...., xN} ) Ω0, denote corresponding Voronoi polygons
{V1, ..., Vk, ..., VN} in such a way that Vk is a territory
that is closer to xk than any other points in Ω0;
therefore:

The set of all Voroni polygons is called a Voronoi
diagram, as shown in Figure 2a. The connection of data
points, whose Voronoi polygons are joined, results in a
triangulation, as shown in Figure 2a. The region of a
convex hull by conciliation of all jointed edges of two
triangles is the possible feasible region in Figure 2b. For
details, the readers are referred to MathWorks.25

4.2. Placements of Experimental Data. The
placements of the experimental data are to minimize
the information free energy (22). Assume that an initial
data set Ω0 and a feasible region set Φ′ exist. Let us
denote a new data xNEW, which is to be added into the
data set Ω0, such that Ω ) Ω0 ∪ {xNEW}, and let G be
information free energy for new training set Ω and the
approximate feasible region set Φ′, denoted by (22). The
following problem should be solved for the placement
of xNEW:

where xNEW ) (yjk+1, yjk, yjk-1, ..., yjk-n, uk, ..., uk-m) and f̃
is a temporary ANN model derived (trained) using the
existing Ω0. Notably, the entire trajectory yj ) (yjk+1, yjk,
..., yjk-n+1, yjk-n), must be designed for xNEW. Hence, the

dynamic system must be driven to follow the desired
trajectory using the ANN model derived from Ω0.

In most cases, in dynamic system (1) the output order
is greater than the input order, i.e., n g m. The solution
of (27) does not suggest some input sequence such as
uk-m-1, uk-m-2, ..., uk-n-1, and these sequences are
needed to perform an experiment. However, these input
sequences can be uniquely determined by solving the
following:

Figure 8. Attainable dynamic feasible region (solid linea) of
example 2 using the Delaunay triangulation based on (a) 20 IFED
data points, (b) 30 IFED data points, (c) 40 IFED data points, (d)
50 IFED data points, compared with the analytical feasible region
(dashed lines).

Figure 9. Trajectory following of the ANN model: ×, ANN
trained by 50 IFED data; s, system output; +, ANN trained by
20 IFED points, to the plant output.

Figure 10. Schematic plot of the pH control system.

Min
uk-m-1,uk-m-2,...,uk-n-1

∑
i)1

n-m

(yjk-n+i, - ỹk-n+i)
2

s.t. yjk+1 ) f̃(yjk,yjk-1,...,yjk-n,ujk ...,ujk-m)

umin e uk-i e umax

|∆uk-i| e ∆umax (28)

Vk ) {p ∈ Vk: ||p - xi|| < ||p - xj||, ∀j * i} (26)

Min
xNEW

G

s.t. yjk+1 ) f̃(yk, yk-1, ..., yk-n, uk, ..., uk-m)

yjk-j,max ) h(yjk-j-1)

yjk-j,min ) h′(yjk-j-1)

umin e uk-1 e umax

|∆uk-i| e ∆umax (27)
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In this work, (28) is solved using the temporary model
f̃ to predict the future. This prediction may not be very
accurate until increasing amounts of “efficient” data are

added to the temporary training set Ω0. Figure 3
displays the total computation flowchart.

5. Illustrative Examples

This section presents three numerical examples. The
first example demonstrates the strategy of the informa-
tion free energy design and compares the differences
among the entropy, enthalpy, and free energy designs.
In the second example, a system with second order for
the output is studied. The operating constraints are
then constructed using the Delaunay triangulation
approach and compared with the analytical constraints.
In the final example, a pH control problem is studied.

5.1. Comparisons among Entropy, Enthalpy,
and Free Energy Design. The first example com-
pares the experimental design approaches for an ANN
model having the following simple system:

Parts a and b of Figure 4 present the 3-D mesh and
contour plot of the above dynamic system, respectively.
In this case, we approximate the feasible region Φ in
(11) by 11 × 11 uniform grid points to yk and uk. This
results in 121 points in the approximate feasible region
of Φ′ in (12). The information entropy, enthalpy, and
free energy are hence evaluated based on the discretized
feasible region Φ′. Assume that a set of initial data
exists, as depicted in Figure 5a. According to this figure,
pure information entropy design places the experimen-
tal points uniformly in the feasible space. The total
entropy rapidly increases with an increase of the
experimental data, as shown in Figure 5b. As Figure
5c indicates, the total prediction errors of the testing
data set using the ANN model decrease. Figure 6a
illustrates the experimental design strategy using the
information enthalpy (21) only. The experiments are
suggested at the places in which the gain changes
rapidly, called very nonlinear places, by the information
enthalpy. The total enthalpy decreases as the rate in
which the experiments are performed increases, as

Figure 11. Placements (×) of the experimental data using
different approaches: (a, b) random input sequence; (c, d) PRBS
signals; (e, f) IFED approach. The symbols (+) are the initial data,
and the symbols O in a and b are two positions of the plant outputs
that appeared in the servo control (set point changed from 7.0 to
9.1) using the random input ANN model.

Figure 12. Decrease of the sum of absolute prediction errors of
ANN as a function of total number of training data.

yk+1 ) 3(1 - 3uk)
2 exp(-uk

2 - 16yk
2) - 10[0.6uk -

27uk
3 - 4(yk - 1)5] exp[-9uk

2 - (4yk - 1)2] -

exp[-(3uk + 1)2 - 4(yk - 1)2]
3
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indicated in Figure 6b. However, as Figure 6c depicts,
the information entropy does not decrease as rapidly
as the pure information entropy. Figure 6d depicts the
decreasing prediction error of the testing data set by
the ANN model as a function of experimental data. The
error is comparable with the pure information entropy.
Figure 7a illustrates the free energy design with a
proper selection of information temperature. Parts b-d
of Figure 7 depict the decrease of information entropy,
enthalpy, and free energy, respectively, with the in-
crease of experimental data. Furthermore, Figure 7e
displays the prediction errors of the ANN model that
are much better than the pure information entropy and
enthalpy. The above prediction errors are obtained
based on comparisons between the analytical outputs
and ANN outputs on a testing data test with equally
spaced 21 × 21 data points.

5.2. Development of a Feasible Region. This
section closely examines the following second-order
system:

This and the previous example differ primarily in the
need to find the feasible region, the region bounded by
(9) and (10). Experiments can be designed based on that
region. Figure 8a plots the existing data set, generated
by PRBS. The Delaunay approach is hence imple-
mented to approximate the boundaries of the feasible

region. Figure 8a compares the analytical boundaries
with the approximate boundaries. Based on the ap-
proximate feasible region, the information free energy
is implemented to obtain the “most” efficient experi-
mental design placements. Parts b-d of Figure 8
compare the approximate boundaries with the actual
boundaries for every 10 additional experiments added
to the training set. According to those results, the
approximate boundaries of the feasible region are
improved after 30 iterations of the IFED compared with
the real boundaries. Moreover, the ANN model is
highly promising in terms of predicting the plant
trajectories, as indicated in Figure 9.

5.3. pH Process Modeling and Predictive Con-
trol. As Figure 10 depicts, this work simulates a
realistic pH control process, as studied by previous
researchers.18 In the case of a sampling time of 1 min,
the plant dynamics can be determined as follows:

For comparison, the following ANN models are con-
structed on the basis of different training data sets:

(1) ANN Model Based on a Training Set Using
Random Input Data. One thousand random inputs
(acid flow rate) satisfying the constraints, 14.65 mL/s
e uk e 18.15 mL/s and ∆u e 0.75 mL/s are generated
using a random number generator. As assumed herein,
the system remains stable at pH 6.9665 initially.

Figure 13. Comparison of the servo behaviors of nonlinear model
predictive control based on three different ANN models: (a) pH
values vs time; (b) control action vs time. The set point is changed
form 7.0 to 7.4.

yk+1 ) 0.28yk-1
2 + 0.36yk + uk/3

uk ) [0, 1]

yk ) [0, 1]

Figure 14. Comparison of the servo behaviors of nonlinear model
predictive control based on three different ANN models: (a) pH
values vs time; (b) control action vs time. The set point is changed
from 7.0 to 9.1.

yk+1 ) f(yk,yk-1,yk-2,uk)
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Hence, the random sequence drives the system. Parts
a and b of Figure 11 depict the placements of the
experimental data. Three ANN models, with total
numbers of 360, 600, and 1000 data points, are trained
separately using that data set. We term these three
models ANNR360, ANNR600, and ANNR1000, respectively.

(2) ANN Model Based on a Training Set Using
PRBS Input Data. Herein, 1000 standard PRBS
signals are implemented. The system is also initially
assumed to be stable at pH 6.9665. The simulated plant
is assumed to be driven by these PRBS signals. Parts
c and d of Figure 11 depict the 1000 placements of the
PRBS design. An ANN model is trained separately
using that data set. We denote the ANN model as
ANNPRBS.

(3) ANN Model Based on the IFED Training Set.
Assume that a set of initial dynamic data already exists,
having a size of PRBS 100 experimental data. After 260
and more iterations of the IFED approaches (totalling
360 and more data points), the sum of errors by the
ANN model for the testing data set has been drastically
decreased compared with PRBS, as indicated in Figure
12. Figure 12 presents the total absolute errors of a
testing set with a total number of 3000 points. Accord-
ing to this figure, the total absolute value rapidly
decreases as the number of IFED points accumulates
but smoothly decays after the total number of experi-
ments accumulates to 360. Accordingly, we train the
dynamic ANN model using only 360 IFED points. We
term the ANN model as ANNIFED.

Parts e and f of Figure 11 display the placements of
IFED. According to parts a-f of Figure 11, the random
input placements fail to drive the system to some

portions of the feasible region. The PRBS inputs can
drive the system to most portions of the feasible region;
however, the experimental points are not distributed as
uniformly as IFED. Parts a and b of Figure 13 illustrate
the servo behaviors of nonlinear model predictive con-
trol, for the case in which the set point of the pH system
moves from 6.9665 to 7.4, using the above three ANN
models separately. Figure 13a reveals that the AN-
NPRBS which appeared oscillates around the new set
point, while the ANNIFED and random input models
behave satisfactorily. Parts a and b of Figure 14 present
a case in which the set point of the pH system is moved
from 6.9665 to 9.1. In this case, the random input
sequence model does not drive the system to the correct
set point. This is because the trajectory of the system
output was driven to somewhere outside of the training
data of the ANNR1000 model as shown in Figure 11a,b.
ANNPRBS appears much better than the random input
sequence model. However, ANNIFED behaves the best
among the three ANN models. Parts a and b of Figure
15 also reveal the regulation behavior using the AN-
NIFED model. Herein, we assume that the flow rate from
the buffering tank suddenly changed from 0.55 to 0.3
mL/s and was measured immediately. In this case, in
a condition of buffer flow rate of 0.3 mL/s, different
ANN’s are trained using IFED and random input
experimental data. As shown in Figure 15a, the AN-
NIFED model performs superiorly to other ANN models
trained by different numbers of random experiments.
Notably, in the case that flow rate from the buffering
tank is changed frequently, it is needed to obtain some
more ANN models in different flow rates. Next, the
control problem (2) using those different ANN models
is performed. The regulation control action can thus
be obtained by implementing suitable interpolation
techniques. However, this is not attempted by this work
since it is not the key concern of this work.

6. Conlcusion

This work presents a systematic approach for devel-
oping a training data set for a black-box model. The
proposed approach is based on the existing data set and
a temporary ANN model. In addition, the training data
set is used to derive information entropy that measures
the uncertainties of the whole feasible region. Informa-

Figure 15. Comparison of the regulation behaviors of nonlinear
model predictive control based on four different ANN models: (a)
pH values vs time; (b) control action vs time. The flow rate from
the buffering tank is changed from 0.55 to 0.3 mL/s.

Figure 16. Fuzzy membership of a possible event to an existing
data.
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tion enthalpy is also derived to measure the nonlinearity
of the entire feasible region. Moreover, new training
data are designed based on the compromise between the
information entropy and energysinformation free en-
ergy. The boundaries of the feasible region are also
obtained using the concept of the Delaunay approach
that is based on the triangulation of the existing data.
This work also presents three numerical examples,
including a realistic pH control example. The IFED
approach is highly promising for all three examples. The
ANN model based on the IFED approach can also
perform very well for the nonlinear model predictive
control of a pH control process.
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Notation

c ) tuning factor of temperature scheduling
Estop ) stopping criteria for the difference between xpre and

xexp

f ) dynamic system model
f̃ ) temporary ANN model
G ) information free energy
∆Gstop ) stopping criteria of the free energy change
h ) upper constraint of state variables
h′ ) lower constraint of state variables
H ) information enthalpy
M ) number of testing data
n ) output order of the dynamic system
N ) number of experiments
m ) input order of the dynamic system
p ) probability distribution function
P ) number of approximate feasible events
S ) information entropy
T ) information temperature
T0 ) initial information temperature
uk ) system model input state
∆u ) input change
∆umax ) upper bound of the input changes
∆umin ) lower bound of the input changes
V ) Voronoi polygon
x ) augmented event of the dynamic space
xexp ) trajectory performed in eq 28
xpre ) trajectory designed in eq 27
yk ) system model output state
ỹ ) system model output state predicted by ANN model
yj ) system model output state designed by IFED
z ) tuning factor of temperature scheduling

Greek Symbols

θ ) event of the dynamic space
γ ) input penalty weighting in the MPC controller
Ψ ) testing data set of the black-box model
Ω ) training data set of the black-box model
Φ ) feasible event set
Φ′ ) approximate feasible event set
µ ) fuzzy membership measure of an event
σ ) standard deviation of the Gaussian distribution
σµ ) standard deviation of the Gausian membership

function

Subscripts

k ) current time

Appendix: Fuzzy Membership Measure of a
Possible Event

Fuzzy mathematics has been a standard technique
to determine the “vague” relations among the variables.
This work implements the fuzzy membership function
to correlate a possible event to an experiment. The
shapes of membership functions can be rather arbitrary
as suggested by many books.26 In this work, we suggest
implementing the following membership function:

where σµ can be roughly determined by the average of
the distances among the initial data set Ω0 such that
membership of a middle point between two existing data
is not too big or too small. The shape of the membership
is demonstrated in Figure 16.
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