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An experimental design scheme proposed for process and product development inte- 
grates the artificial neural network, random-search algorithm, fuzzy classification, and 
information theory. An initial batch of experimental data is first collected to construct a 
neural-network model. Random search generates a number of candidates for the next 
batch of experiments. A fizzy classification algorithm is used to find the cluster centers 
of these candidates. An information free energy index is defined to balance the need for 
better classification and the relevance of each class in optimization. New experiments 
are performed at these cluster centers to validate the model. The procedure is repeated 
until an optimal solution is reached. Case studies using a mathematical model and a 
real industrial pigment-blending project illustrate the abilities of this method to locate 
multiple optima and handle multivariable experimental design. 

introduction 
In the competitive market, speed product or process devel- 

opment is the key to success due to shorter product life cy- 
cles. If the new product cannot be made in time to meet the 
needs on the market, it would be outdated or even no longer 
wanted. It is important to accelerate the process design pro- 
cedure without sacrificing product quality and production 
cost. It is also important to have quality-improvement strate- 
gies start at the design stage rather than the product inspec- 
tion stage. In many industries, such as specialty chemicals, ce- 
ramic and composite materials, finding recipes, and designing 
new processes are basically empirical. Getting experimental 
data, if not difficult, is time-consuming and costly. When there 
is an abundance of data, an experienced engineer is needed 
to sort through them and detect opportunities of improve- 
ment. Traditionally, a systematic methodology that includes 
statistical data analysis and decision making is known as ex- 
perimental design (Box and Draper, 1987; Taguchi, 1986; 
Lochner and Matar, 1990). On the other hand, product and 
process development are regarded as learning experiences 
that have been the focus of many artificial intelligence re- 
searchers. For example, Fukunaga (1990) described the pro- 
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cess of classijier design or statistical pattern recognition in a 
series of iterative steps: data gathering, registry, analysis, 
classifier design, and testing. The logic does not differ from 
that of experimental design, except that the tools employed 
are more suitable for problems with high dimensionality and 
nonlinearity. Saraiva and Stephanopoulos (1992) demon- 
strated that with existing plant data, one class of machine 
learning approaches, top-down induction of decision trees, 
can be used to explore process-improvement opportunities. 

In this research, a new experimental design scheme that 
uses the artificial neural network (A"), random search, 
fuzzy classification, and information theory is proposed. It can 
find out the potentially available knowledge of the process 
and reduce the time taken when the experimental study is 
undertaken. This approach is quite different from that of Lin 
et al. (1995), whose approach for experimental design com- 
bines simulated annealing and ANN modeling methods. This 
work replaces their stochastic elements using a deterministic 
method derived from information theory, because the 
stochastic search is lack of strong information for decision- 
makers. The major advantages of the proposed method are 
its abilities to cope with multivariables, precisely determine 
the number and location of future test experiments, and to 
locate multiple optima. Various components of the proce- 
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dure are elaborated in the following five sections. Two case 
studies are presented in the seventh section. Finally, conclu- 
sions are made. 

Neural-Network Model 
A model IS a summary of our knowledge about perfor- 

mance-variable relations. There are two common ways to 
construct a model. The first option is to derive a model from 
physical principles. Unfortunately, due to the complexity of 
the processes involved, construction of an applicable physical 
model is time-consuming, expensive, and even impossible in 
many cases. Alternatively, experimental data or historical 
plant data are used to build statistical or black-box models. 
Artificial neural networks are known to be a powerful tool to 
approximate complex multivariable functions (Hornik et al., 
1989, 1990). In our first step, a feedforward artificial neural 
network of currently available data is constructed using su- 
pervised learning. 

The network in this research is composed of three layers 
(Figure 1). The input variables of the network are the design 
variables x P  = [ xp, . . . , xg,]. The hidden layer is composed of 
N, neurons, whose output is given by 

The outputs of the network represent the predicted con- 
trolled or response variables, y p  =[yf, ..., y&,], with Nh 
neurons in the hidden layer. The output is given by 

A 8, 

1 1  

j x ( x P ) =  ~ $ , ~ [ h , ( x P ) ] + b ; ,  k = 1 , 2  ,..., No,  (2) 

where No is the dimensions of the output vectors, the input 
and the output component of the pth data pair are defined 
by (xp, y p ) ;  wil and w: are weights between the output and 
the hidden layers and weights between the hidden and the 
input layers, respectively; bi  and b: are biases in the output 
layers and hidden layers respectively; and z is the output in 

Figure 1. Architecture of a feedforward neural network. 

the hidden layer. The hyperbolic tangent activation function 
is used (Kalman and Kwasny, 1992). The sum square error, 
E ,  which represents the error between the predicted and tar- 
geted values is employed to evaluate the ability of the net- 
work, 

where P is the number of experimental data. The pseudo- 
Gauss-Newton method (Hertz et al., 1991; Gorodkin et al., 
1993) is used for training. Due to the small number of train- 
ing data, a statistical technique called the leave-one-out 
(LOO) cross-validation scheme is used (Allen, 1974). 

Region Optimal Search 
To demonstrate the applicability of a model, we need to 

extract features from the model and validate them. In prod- 
uct and process development, the feature of interest is the 
optimal operating condition. Multiple local optima are fre- 
quently encountered. It is often necessary to rate alternative 
local optima-based secondary objectives such as robustness, 
safety, and the like. Therefore, a nongradient-based search 
procedure should be used. An existing model is most trust- 
worthy around the experimental points. They should therer 
fore be used as the starting points of our search. The entire 
procedure is described as follows: 

Use existing experimental points as starting points. 
Define a local search region as a hypersphere around these 
experimental points with volume equal to total search space 
divided by the number of starting points (Figure 2a and 2b). 

Generate a set of N, random points at each start- 
ing point and evaluate the objective function at these points. 

Extract the best N, points. Define a local search 
region as a hypersphere with a volume equal to the total 
search space divided by N,. Reset N, as new starting points. 

Repeat steps 2 and 3 until the average perfor- 
mance of the best N, points has no significant change (Figure 
2c). 

It should be pointed out that other nongradient-based pro- 
cedures that are capable of locating multiple local minima, 
and retaining a near-optimum population such as a genetic 
algorithm could be used for this step. The key issue is what 
we do with this population. It is impossible to perform exper- 
iments at all the points. A clustering technique is used here 
to select the most representative candidate points. Experi- 
ments will be performed only at the clustering centers. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Fuzzy Classification 
A clustering technique is used here to select the most rep- 

resentative candidate points for the best performance. The 
purpose of the clustering process is to distill a certain num- 
ber of homogeneous clusters or classes from a large data set 
and to classify a concise representation of the individual local 
optimal behavior. Experiments will then be performed only 
at the clustering centers. Data points of all-or-none crisp 
classes are not fitted, because in reality each point may be- 
long to more than one cluster. The degree of its membership 
characterizes the point as being, to a greater or lesser degree, 
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Figure 2. Random-search algorithm. 
(a) The function of two variables have three local maxima 
and three local minima. (b) There are eight experimental 
points. The circle covering each point means the effective 
search region. (b) The best points ( x 1 are selected based 
upon the search results. Note that the background shows the 
contour of the real model. 

a member of the appropriate cluster. A fuzzy classification 
technique is selected to divide these candidates into several 
groups or clusters. 

The classification algorithm we use is an unsupervised fuzzy 
classification algorithm called fuzzy c-means (FCM) (Bezdek, 
1981; Bezdek et al., 1987). The data-clustering problem is to 
find C clusters in a set of N finite data sets { x ’ ,  x2, . . . , n”}. 
The cluster structure can be conveyed by a set of cluster cen- 
ters {c’, c 2 ,  . . . , cc} ,  where ci is the center of the ith cluster. 
The minimization of the c-mean objective function can be 
defined by 

where dik is the Euclidean distance expressed by 

and rn is a weight exponent suggested to be within the range 
1.5 to 3 by Bezdek (1984). A value of 2 for rn is used in this 
study, and pIk is a fuzzy membership that measures the de- 
gree of association of the kth data point x k  with the ith 
cluster class: 

Note that 
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An iterative scheme for solving the optimization problem is 
given by Bezdek (1981): 

,L1~ 

N 

Please note that all variables should be prescaled so that 
they are put on an equal basis in the analysis in order to 
avoid the issue of the order-of-magnitude difference between 
variables. To classify a group of data, the number of classes 
has to be specified. In general, more classes can help clarify 
the picture of classification. However, additional classes in- 
crease our burden, since we are going to perform test experi- 
ments at the clustering centers. The more classes we use, the 
more experiments we need to perform. Our goal is not to 
produce the crispiest classification but to locate optima as 
quickly as possible. Hence an information index is used to 
determine the optimal number and location of the next set of 
experiments. 

Information Index 
Information entropy 

According to Shannon's definition (Shannon, 1948; Shan- 
non and Weave, 1949) of information entropy for a variable 
X ,  which can randomly take values x from a set X ,  the infor- 
mation entropy of the set X is 

where p ( x )  is the probability of the event x occurring. If the 
variable X can only take a narrow range of values, p ( x ) ,  for 
these values is close to 1. For other values in X ,  p ( x )  is close 
to 0. Therefore S(x) is close to zero. If the variable X can 
take a lot of different values in X each time with a small 
p ( x ) ,  S(x) will be a large negative number. Therefore, infor- 
mation entropy is a measure of how random a variable is 
distributed. I t  decreases when the variable is more randomly 
distributed. 

Let us apply the information entropy to measuring how 
clearly the ith cluster is classified: 

where p(xk lc ' )  = p l k / 4  is the probability of finding x k  as a 
representative of the ith cluster and N, = Er=,  pZk is defined 
as the fuzzy number of data of the jth cluster: 

Therefore, the entropy of the entire classification set can be 
defined as 

c N ,  
S =  C -si N i = l  

The second term is a measure of the size of each cluster. If 
there is one cluster, it is -In N. If the group is divided evenly 
into two clusters, then it is -In( N/2). The smaller the clus- 
ters are, the larger and more orderly the entropy is. Note 
that S -+ 0 at C -+ N. However, the increase in entropy with 
the increased number of clusters is offset by how clearly we 
can divide up the data into groups. The term, pik In pik, rep- 
resents the penalty of overlapping between groups. If the data 
points belong to one group (i.e,, p i k  + 1 and pjk --f 0, i z j ) ,  
the contribution of these data points to the first term is negli- 
gible. On the other hand, if the data points belong to a large 
number of groups, p,k will be nonzero for several groups and 
the pik In pik term becomes significant. 

Figure 3a illustrates a group of data points. When the group 
is classified into different clusters, the size and overlap of the 
clusters contribute to information entropy (Figure 3b). It can 
easily be seen that the overlap effect (dark area) is zero when 
there are exactly four clusters. If we attempt to classify these 
data into more groups, the informational entropy will actu- 
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I 
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ally increase due to overlap between groups. Although the 
information entropy keeps increasing with the size of the 
cluster getting smaller, the increase in information entropy 
(i.e., gain in knowledge) becomes marginal (Figure 3c), par- 
ticularly at the change from 4 to 5 clusters. 

Information enthalpy 
In the previous subsection, information entropy is consid- 

ered to be a measure for determining a suitable number of 
clusters. However, the optimization objective is never taken 
into account. An information energy that is just the expected 
value of the performance index is defined as 

where f,,, is the value of the minimum f recorded in the 
optimal search and f [ j ( c ' > ]  is the performance index evalu- 
ated at the cluster centers. The information energy is a mea- 
sure of the relevance of the messages generated by the clus- 
tering analysis to the optimization procedure. Provided we 
have full confidence in our model, it is most desirable that 
only one cluster center with objective function close to global 
is generated. It is also acceptable that the clustering analysis 
generate a number of centers that have performance indices 
close to global minima. However, to carry out a lot of experi- 
ments at points where the performance expected is poor 
would be a waste of effort. Please note that the information 
energy has the unit of the performance index, while informa- 
tion entropy has no unit. The proper scaling of the energy 
term is discussed in the next subsection. Figure 4 shows a 
mesh plot of a function and the corresponding contour. The 
same data points used in the information entropy section are 
also shown in this contour plot. Figure 5a shows the changes 
in information energy when we use one to six clusters in the 
FCM analysis. If we use only one cluster, the center will be 
located near the point (0.5, 0.5). Due to the large value of the 
performance index, the information energy is high. While it is 
expedient from an experimental view to perform only one 
experiment, information energy tells us that this piece of in- 
formation is not especially relevant. If we use more clusters, 
more relevant information will be obtained. If information 
energy is the only criterion, the number of experiments in the 
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Figure 4. (a) Three-dimensional mesh; (b) group data 
points against the contour background. 

next step should be four because an increase from four to 
five clusters results in no decrease in information energy, that 
is, there will be no improvement in the relevance of informa- 
tion obtained. 

Information free energy 
The indices of entropy and energy are measures of how 

well a set of cluster means classifies the data points and how 

i - 6- ' 0  
1 3 5 7 

Number of clusters 

(b) 

1 

Figure 5. (a) Information enthalpy vs. cluster; (b) enthalpy multiplied by temperature vs. cluster; (c) free energy vs. 
cluster. 
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well a set of cluster means performs if it is chosen as the next 
set of experiments, respectively. However, considering them 
separately may result in inconsistency between the two. To 
balance them, a composite information index: the information 
free energy is defined: 

Perform new experiments 
.based on the best 
classifications 

Regress an ANN using - all existing data 

F = U - TS. (15) 

Use FCM to 
determine cluster 
center for E l ,  ..., Cm 

The temperature defined is a normalization factor: 

No 
Set c=l 

where f,, is the maximum f of all surviving points in the 
regional optimal search; and N is the total number of exist- 
ing experiments. During the procedure of determining the 

STOP J 

number of clusters, temperature remains constant. This is 
analogous to the thermodynamic equilibrium criterion under 
the isothermal condition that the free energy is minimized. 
During the initial phase of the search, when N is small, the 
data are relatively scattered, and f,, - fmin is relatively 
large. We should put more emphasis on obtaining the shape 
of the performance relation rather than finding the optimum. 
As the data accumulates with more new experiments, the re- 
sult of region optimal search will concentrate toward global 
optima, and f,, - fmin would decrease. Emphasis should be 
put less on categorizing information and more on optimiza- 
tion. 

The changes in information free energy ( F )  with the num- 
ber of clusters for the previous 200 data points is shown in 
Figure 5c. The corresponding two parts [information entropy 
( S )  multiplied by temperature (T ) ,  and information energy 
(U)]  are also included. In this case both information energy 
and information entropy call for four experiments. 

with C-1 cluster centers 

Calculate the information 
free energy F for all 
classfiation 

Select the classification I thatmioF 

C=Ct 1 
Use FCM to determine 
C cluster centers 

Find the cluster centers 
andcalculate the 
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Implementation of the Information Free Energy 
Criterion 

It is possible for information free energy to show multiple 
local minima. There are two ways to implement this phe- 
nomenon. If the subject of investigation is a recipe of a new 
product, many tests can be conducted simultaneously in a 
laboratory environment. The cost of a single experiment is of 
little concern. We can first decide the maximum number of 
experiments that can be performed in a single batch, and then 
calculate the information free energy of each classification. 
The number of experiments in the next batch should be the 
one that minimizes information free energy. In the early 
stages of the search, a relatively large number of experiments 
will be collected before we update the ANN model, but the 
total number of batches can be reduced. If the subject of 
investigation in each single experiment is an expensive step, 
we can start the classification procedure with just one cluster. 
Calculate the change of information free energy if another 
cluster is added. If there is an increase in information free 
energy, the additional cluster is rejected. Experiments are 
then performed at the existing cluster centers. If there is a 
decrease in information free energy, the additional cluster is 
accepted, and the possibility of adding another cluster is in- 
vestigated again. When data are scarce, the results of re- 
gional optimization will be scattered. The information free 
energy is likely to decrease when we try to add another clus- 
ter. However, the number of experiments in each batch will 
be kept at the first local minimum of information free energy. 
The ANN model is updated more frequently. The number of 
batches may increase, but the total number of experiments 
will be reduced. A flow chart of the entire experimental de- 
sign procedure is illustrated in Figure 6. 

Case Studies 
In order to prove the ability of the proposed method, two 

examples will be tested. For a simple explanation, a modified 
Himmelblau function of two independent variables is used 
because it is easy to visualize a search in a two-dimensional 
case. The other example is concerned with a practical chemi- 
cal process of manufacturing ceramic pigment. Both cases to 
be performed are based on the rule of the reduced number 
of batches. 

Modified Himmelblau function 

local optima: 
This function with two independent variables has multiple 

defined for - 5 I x I  I 5 and - 5 I x 2  5 5. The original Him- 
melblau function, which consists of only the first two terms of 
Eq. 17 has four equal local points (Reklaitis et al., 1983). 
After adding the last three terms of Eq. 17, a global point at 
(- 3.80, - 3.32) with a value of 43.3 can be found. From the 
mesh surface (Figure 7a) and the contour plot (Figure 7b), 
four local optimal points with a global point are shown. Usu- 
ally, it is difficult for the traditional experimental design to 

882 April 1998 

1000, 

Figure 7. (a) Three-dimensional modified Himmelblau 
function; (b) the corresponding contour. 

build an accurate model for the modified Himmelblau func- 
tion and to find the global optima. Finding optimal points 
based on the proposed experimental design method is de- 
picted in Figure 8. A total of 12 batches of experiments are 
done and the results of the first, the sixth, the ninth, and the 
twelfth batches are shown. Column (a) lays out the location 
of the experiments that have been performed against the 
contour of the Himmelblau function. Column (b) shows the 
candidates for the next batch of experimental results gener- 
ated by the regional optimal search against a background of 
the contour of the current ANN model. Information analysis 
is given in column (c). The exact locations of the next batch 
of experiments are shown in column (d). 

Note that the information energy is pretty high for all clus- 
ters in the first few batches. For example, after the first batch, 
the current contour shows a single optimum. If decrease in 
information energy is used as the criterion, only one experi- 
ment will be performed. After the sixth batch, two major op- 
tima are found and only two experiments would be per- 
formed if optimization is our only concern. However, infor- 
mation entropy calls for more experiments that help us to 
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Figure 8. Optimal experimental design at different batches. 
(a) The current and the past experimental points against the contour of Himmelblau function. (b) Corresponding model contour whose 
solid points represent the found local minimum points. (c) Information analysis plot. (d) The next batch of the new experimental points 
against the contour of Himmelblau function. 

mold the performance surface more accurately. In Figure 9, 
it is found that the representation of the initial ANN model 
is pretty poor, but the ANN model is approaching the origi- 
nal system little by little with the new experimental data 
added. In the final stages, the entropic term contributes little 
to the decision making. Information energy will help us place 
all experiments around the local optima. 

In traditional experimental design, two-level factorial de- 
sign can only estimate the main effects and interaction and 
be modeled as a linear plan. In this study, three-level facto- 
rial design (3') is used to estimate the degree of curvature in 
the response. The locations of the initial points are shown in 

Figure 10a. Thus, a second-order response-surface model can 
be obtained using the least square estimation. The contour of 
this model is shown in Figure lob. New experiments are added 
at the local optima. The response surface is updated to im- 
prove the model and generate the new optimal point. How- 
ever, it is found that the optimal point is trapped into a local 
point after 40 iterations of searching. Figure 10c displays the 
result for 40 runs. The failure is due to the inability of a 
second-order surface to be molded into the proper shape. 
However, the degrees of freedom of a polynomial response 
surface increase combinatorially with respect to N .  A 4th or- 
der 2-variable response surface will have 13 degrees of free- 
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Batch 1 Batch 6 The sample preparation and color-measuring process can 

The six components are weighted and blended. 
Samples are calcined in a crucible using a preset heating 

policy. Temperature is ramped to a setpoint and held con- 
stant for a long period of time. 

After cooling, the pigments are ground, washed, and 
dried into particles of small size. 

Body powder and water are added to the pigments. The 
mixture is powdered in a blender and dried again in an elec- 
tric-fired kiln. 

Three color indices L. a ,  and b of the sample are mea- 
sured on a visible spectrophotometer. The color of the final 
sample is determined by complex interaction between the 
recipe of the sample and the heating policy in the calcination 
process. Only the effect of the recipe is presented here. The 
preceding procedures involve complex chemical reactions. It 
takes a long time (order of days) to complete the pigment 
preparation procedure. 

The objective is to find a recipe that satisfies the customer's 
specification: 

be outlined as follows: 

x2 5 5 x, 

x2 XI x2 5 xi 

Figure 9. Approximation model at different batches. - 1 . 1  <L=L""P-Lref<-0.9 - (18) 

dom; hence, a large number of data is needed to obtain a 
generalizable surface. On the other hand, an ANN can be 
readily molded into a complex surface, but a feature extrac- 
tion scheme is needed to screen out the important features 
that require validation. 

Synthesis of cobalt blue color pigment 
Aluminum oxide (Alz03), cobaltous oxide (Coo), zinc ox- 

ide (ZnO), magnesium oxide (MgO), potassium nitrate 
(KNO,), and potassium chloride (KCI) are the basic ingredi- 
ents of the cobalt blue color pigment. Al,O, is the bulk ma- 
terial of the pigment, and COO provides the blue color. The 
color-modifiers, ZnO and MgO, are used during precalcining 
or premilling to adjust the color of the pigment. The sample 
can be made greener by adding ZnO, and redder with MgO. 
Adding mineralizers, KNO, and KCI, can reduce the reac- 
tion temperature. 

-2.1 < b = bexp - bref I - 1.9, (20) 

where the superscripts exp and ref represent the experimen- 
tal result and the reference point, respectively. The perfor- 
mances of some batch experiments are shown in three-di- 
mensional space ( L ,  a ,  and b)  in column (a) of Figure 11. 
The results of the suggested experiments are shown in col- 
umn (b) of Figure 11. The number of experiments and the 
bestperfomance for L,  a, and b of each batch are shown in 
Figure 12. The changes in U ,  TS, and F with the number of 
clusters at the first, the sixth, the tenth, and the fourteenth 
batch of experiment are shown in Figure 13. 

The operator's experience provided locations for the first 
batch of eight experiments, although there might be a large 
deviation from the desired target. Similarly, in the first few 
batches, there were suggested experiments that yielded rather 

Figure 10. Traditional experimental design using surface response methodology. 
(a) Initial experimental points against the counter of Himmelblau function. (b) Optimal point against the counter of the surface response 
in the first run. (c) All experimental points in 40 batches. 
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Figure 11. Optimal pigment experimental design at different batches. 
(a) Coloring deviation plot for the current and past experiments. (b) Coloring deviation lot for the next experimental points. Note that 
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unsatisfactory results. However, those experimental points 
were not wasted. They provided information on the response 
surface that was incorporated into the neural network model. 
It should be noticed that a feasible recipe was obtained after 
the fifth batch (Figure 12a). If we allow the procedure to be 
carried on, i t  would locate more and more points around the 
optimal point. After the tenth batch, a near optimum is al- 
ways found in a new batch. That means more and more points 
are located around the optimum pigment (Figure 11). The 
neural network model in this region becomes more and more 
accurate near the optima. This is particularly important if ro- 
bustness of the selected operating condition is of great con- 
cern. A total of 49 experiments were required to bring us an 
optimum (after the tenth batch). A full two-level six-factor 
factorial design required 64 experiments. Since the perfor- 
mance is quite nonlinear, it is unlikely that a 2-level factorial 
design will locate the correct optimum. A full 3-level 6-factor 
factorial design required 729 experiments. If a partial facto- 
rial design (Myers and Montgomery, 1995) is run using the 
central composite design, 77 data points were required to 
perform an initial search. 

Conclusion 
Quality by design suggests that quality improvement op- 

portunities should be investigated early in the research, de- 
velopment, and design phases. However, the number of vari- 
ables involved and the complexity of the perfomance-varia- 
ble relation of many processes and products limit the applica- 
bility of traditional experimental design procedures. A novel 
experimental design procedure that integrates various ele- 
ments of artificial intelligence research is proposed. ANN is 
used as the tool to summarize all experimental information 
into a mathematical model. Random search is employed to 
extract features of this model. These features are classified 
with a fuzzy classification technique and information theory. 
An information free energy is defined to determine how many 
features are worth testing. A simulation example demon- 
strates the logic of the method. An industrial example 
demonstrates that the proposed method can reduce time, cost, 
and risk of the product and process development. 
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Notation 
C =  number of clusters 
E = performance function for training neural network 

h, = forward signal for passing through the jth hidden neuron 
J =  objective function for calculating cluster centers 

N = fuzzy number of data of the j th cluster 4 = probability of the event occurring 
xP= pth input vector 
y p  = p th output vector 
y ,  = measured output k 
9, = predicted output k 
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