
Fractal Analysis of Time-Series Rule-Based Models and Nonlinear
Model Predictive Control

Ching-Yu Peng† and Shi-Shang Jang*

Chemical Engineering Department, National Tsing-Hua University, Hsin-Chu, Taiwan, R.O.C.

Abundant time-series dynamic data can be accumulated from a chemical plant during long-
term operations. In our previous work, these plant data were directly implemented for the
purpose of model predictive control. However, a large amount of time-series data is required to
perform high-quality nonlinear model predictive control. In this work, fractal analysis is
performed to reduce the size of a time-series data set for high-quality nonlinear model predictive
control. Results in this study indicate that on-line identification of nonlinear models is
unnecessary if the disturbances to the process satisfy the fractal-equivalence condition.
Simulation examples, including the dual composition control of a high-purity distillation column,
demonstrate that the nonlinear model predictive scheme is quite useful for those cases in which
the linear model predictive controller has failed.

1. Introduction

Abundant time-series dynamic data can be accumu-
lated during the long-term operation of chemical pro-
cesses. In our pervious work (Peng and Jang, 1994),
those plant data could be easily organized into the
following input (u) and output (y) rule-based model
form:
If yk is in Yk, and if yk-1 is in Yk-1, ..., and if yk-n is

in Yk-n, and if uk is in Uk, ..., and if uk-m is in Uk-m,
then yk+1 is in Yk+1. (R1)
where k represents the current state and n and m are
known process orders. The above rule set can be
implemented as the plant model for nonlinear model
predictive control (NMPC). However, the following
problems remain unsolved:
(i) If the system is not a single-input-single-output

(SISO), and/or if the system orders (n and m) are high,
the required rule set that provides high-quality NMPC
may be extremely large because it requires a substan-
tially dense rule set.
(ii) On-line identification of low-frequency distur-

bances is not easily performed. The disturbances must
first be measured off-line, and then the required data
set becomes larger.
Too large of a data set may be infeasible to save in the
computer memory. Further, even in the case of a
sufficient amount of computer memory, an on-line
search of nonempty membership rules from a large data
set may consume too much computer time, thereby
making on-line control infeasible. In this work, fractal
analysis is applied to solve the above two restrictions.
Model predictive control (MPC) has found successful

advanced control scheme applications in the chemical
industry since the pioneering works by Culter and
Ramaker (1979) and Richalet et al. (1978). In those
works and a later substantial review work (Garcia and
Morari, 1982), only empirical models such as impulse
response models and dynamic matrix models were
recommended for use by the model-based controllers.
In linear systems, the system dynamics can be well
defined by the above empirical models; this is not true
for nonlinear systems. In addition, first principle physi-
cal models have been most frequently used in recent

developments of nonlinear model-based control schemes
(e.g., Henson and Seborg, 1991; Jang et al., 1987).
However, a physical model is normally quite difficult
to implement on-line because (i) a first-principle model
is always highly complicated and, consequently, also
difficult to implement in real time and (ii) these models
also always include many under-determined parameters
that should be identified on-line. In this work, the time-
series rule-based models (instead of physical models) are
implemented as (R1). In a separate work, Lu and Holt
(1990) also implemented a look-up table model that is
very similar to (R1). However, they failed to mention
the rule-based model application in the area of model
predictive control. This work provides a detailed de-
scription of such an application.
Fractal and chaotic analyses for nonlinear system

have become an increasingly active area in chemical
engineering. Many researchers have used the chaotic
theory to discuss the ergodicity and bifurcation in
control loops (e.g., Ydsite and Golden, 1991; Saucier et
al., 1987). Some other works applied chaotic theory in
process design and simulations (e.g., Fidkowski et al.,
1991; Lucia et al., 1990). However, a majority of related
works have performed fractal analysis in chemical
systems, e.g., a fluidized bed (Fan et al., 1993), and
catalysis systems (Giona, 1992; Kinoshita et al., 1992).
In the above works, the fractal theory is frequently used
to interpret the uncertain behavior of nonlinear systems
by choosing appropriate scaling factors. In this work,
fractal theory is used to analyze the similarities among
the rules in the rule set of (R1). The fractal transformed
model of (R1) is also verified to be capable of represent-
ing the dynamic behavior of the nonlinear systems in a
wider range than the original rule set that is used to
perform the fractal analysis.
In this work, fractal analysis of the rule set (R1) is

performed to reduce the burden of storage and also
search for a large rule set. Furthermore, nonlinear
model predictive control using this rule set is shown to
be superior to the original approach owing to the fact
that the reduced rule set actually represents the process
dynamics in a larger range than the original rule set.
Also, analysis results indicate that, for many cases, the
equivalence condition for different values of distur-
bances of the original rule-based model is not true.
Such a condition can be true in fractal transformed rule
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set including a very important application case: high-
purity distillation systems.

2. Theory

A general nonlinear lumped system is considered.

where x ∈ Rl are system states, u ∈ Rl′ are control
variables, y ∈ Rl′′ are on-line measurements, and d ∈
Rl′′′ are disturbances. If the computer control system
has executes with a zero-order-hold control element, the
following functions φ and γ can be obtained from f and
g in (1) such that:

As indicated in our previous work (Peng and Jang,
1994), a function vector F exists such that:

However, the input-output model F can generally not
be easily obtained explicitly, even in the optimum case
in which system dynamics f and g are completely
known. In our previous work, the rule sets in (R1) were
used instead of the physical models (2) or (3) to perform
model predictive control because the physical models are
always quite difficult to obtain. However, as mentioned
above, a large rule set may be required for high-quality
rule-based control. Furthermore, identifying distur-
bances requires taking off-line measurements, which
may not be available or else would result in a large rule
set.
2.1. Nonlinear Model Predictive Control. Given

the fact that the known physical state space model (2)
or input-output model (3) can be a set of rules in (R1)
and a time horizon, the most general model predictive
control scheme can be as the following:

where k represents the present time, æi, I ) 1,..., NO, is
the discretized operating cost as a function of only the
input and output variables, ŷk+i is the model predicted
output into the immediate future, and NO is the
interesting time horizon for the immediate future. In
this work, we set æi ) (ŷk+i - ys)T (ŷk+i - ys), where ys
is the set point. However, in case that some unknown
disturbance d arises in (2) or (3), dk must be updated
so that the estimated output ŷk+i can be accurately
predicted by the model (2) or (3). To update the model,
the following identification problem must frequently be
solved on-line:

Although (5) must be solved on-line, there are some

exceptions. As indicated in Economou et al. (1986), if
the following superposition condition is satisfied, on-
line identification is not necessary, i.e.

The optimization problem of on-line control becomes

However, the above superposition condition is generally
not true.
2.2. Model Prediction Using the Rule-Based

Model. Given a rule set model in (R1), and current
state (yk, yk-1, ..., yk-n,uk, ..., uk-m), how can the future
states ŷk+1, ŷk+2, ... be estimated? In our previous work,
fuzzy mathematics were used to find “similar” rules
from (R1). The measurements yk, yk-1, ..., yk-n are
assumed here to be noisy. We assume the fuzzy
membership of an element of yk, yk-1, ..., yk-n to be in
trapezoidal form and the uncertainty of a rule can be
expressed by a triangular membership. The fuzzifica-
tion of a rule for a set of measurements is as follows:

where Rj is the jth rule in the rule set. The defuzzica-
tion of a prediction of the future state is as follows:

Given (9), problem (4) can be solved. However, as
indicated in the previous sections, (a) the rule set (R1)
can be too large to store and search and (b) the
identification problem (5) may be required to be solved
before the predictions of (9) can be made. In the next
section, fractal approach is implemented to relieve the
burden of a large rule set. In some cases, the NMPC
using the fractal-transformed rule-based model of the
rules may bypass the on-line identification and go
directly to the problem (4).
2.3. Fractal Analysis of Rule-Based Model. The

rule-based model set in the form of (R1) is next
considered. The rule set is simplified into the following
form:
If ∆yk is in ∆Yk, and if ∆yk-1 is in ∆Yk-1, ..., and if

∆yk-n is in ∆Yk-n, and if ∆uk is in ∆Uk, ..., and if
∆uk-m+1 is in ∆Uk-m+1, then ∆yk+1 is in ∆Yk+1. (R2)
where ∆yk-i ) yk-i - yk-i-1, and ∆uk-i ) uk-i - uk-i-1.
Given known yk-n and uk-m, the rule can be easily
reconstructed back to (R1) and, hence, yk+1 can be
predicted. Figure 1 shows a set of rules of (R2) for the
CSTR example (also the example No. 1 in this study)
given in our previous work in the above simplified rule-
based model (R2). In Figure 1, the magnitudes of ∆y1,
∆y2, and ∆y3 are plotted on the three axes for the same
control actions ∆u1, ∆u2, and ∆u3, respectively. This
figure indicated that the rules are quite similar to each
other except for that the triangle sizes are different.

x3 ) f(x, u, d)

y ) g(x, u, d) (1)

xk+1 ) φ(xk, uk, dk)

yk ) γ(xk, uk, dk) (2)

yk+1 ) F(yk, yk-1, ..., yk-n, uk, uk-1, ..., uk-m, dk) (3)

min
uk,uk+1,...,uk+NO

∑
i)1

NO

æi(ŷk+i,uk+i-1) (4)

s.t. (2) or (3)

min
dk

∑
i)1

NI

(ŷk-i - yjk-i)
2 (5)

s.t. (2) or (3)

F(Uk + dk) ) F1(uk) + F2(dk) (6)

min
uk,uk+1,...,uk+NO

∑
i)1

NO

(ys - yjk+i + ŷk+i) (7)

s.t. (2) or (3)

µRj,yk
(Yk+1) )

min[µyk(Yk), ..., µyk-n
(Yk-n), µyk(Uk), ..., µyk-n

(Uk-m)]
(8)

ŷk+1 )

∑
j)1

M

µRj,yk+1
(Yk+1)‚Yk+1

∑
j)1

M

µRj,yk+1
(Yk+1)

(9)
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Figure 2 plots the other subsets of the rules; however,
the rules form two different sets of similar triangles.
Figures 1 and 2 lead to the following definition and
algorithm:
Definition 1: Reset Dynamics Set of a System.

Consider a set containing the following reset dynamics:

We term R as the reset dynamics set of the dynamic
system.
Algorithm 1: Fractal Analysis. Consider two rules

in R, that are with same control actions ∆uk, ∆uk-1, ...,
∆uk-m+1, if there exists a real number M such that for
any ∆yk+1, ∆yk, ∆yk-1, ..., ∆yk-n+1 in rule No. 1 and
∆y′k+1, ∆y′k, ∆y′k-1, ..., ∆y′k-n+1 in rule No. 2 the
following is true

then one of the rules should be eliminated from the rule
set.
In real applications, the exactM in (10) cannot be found
owing to consideration of model uncertainties and
measuring noise. The equalities in (10) should be
considered with certain range tolerances. Using the
above algorithm, all of the rules in Figure 1 will

obviously be eliminated except for one rule. Also, all of
the rules in Figure 2 will be eliminated except for two
rules. Therefore, the following condition is true:
Property 1. Consider a linear first-order system in

the following form:

and if a rule set exists in the form of (R2) that is
obtained from the above linear system, then all of the
rules will be eliminated except for only one rule by
performing the magnification proposed by Algorithm 1.
Proof: Omitted.

However, not all rule sets in any of the systems can be
reduced to one rule. The remaining rules in the
transformed rule set of R may not be so significantly
reduced from the original R. Hence, the following
scaling factor and experimental fractal dimension are
defined as:
Definition 2: Scaling Factor and Fractal Dimen-

sion. Given a subset S (fractal set) of R that the rules
in the subset are all with the same control actions ∆uk,
∆uk-1, ..., ∆uk-m+1, then the magnification factor M in
the above Algorithm 1 is denoted as the scaling factor
of the fractal set, and the experimental fractal dimen-
sion D is denoted by the following:

Figure 1. Fractal shapes of a rule set that can be reduced to a
single rule. (a) A 3-D plot of a n ) 3 system. (b) The projection of
(a) to a 2-D plane.

R ) {x|x )
(∆yk+1′∆yk, ∆yk-1, ..., ∆yk-n+1, ∆uk, ..., ∆uk-m+1)}

∆yk+1

∆y′k+1
)

∆yk
∆y′k

)
∆yk-1

∆y′k-1
) ‚‚‚ )

∆yk-n+1

∆y′k-n+1
) M (10)

Figure 2. Fractal shape of a rule set that can be reduced to a
two rules. (a) A 3-D plot of a n ) 3 system. (b) The projection of
(a) to a 2-D plane.

yk+1 ) Ryk (11)

D ) slop(ln(no. of rules removed from S)
ln(M) ) (12)
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In most systems, systematic approach is unavailable
to find the number of rules remaining after the analysis
in Algorithm 1 has been performed for R. In fractal
analysis, the above fractal dimension reflects the “den-
sity” of the systems. The following fractal-transformed
rule set is defined as follows.
Definition 3: Fractal Rule Set and Prediction

Operator. Consider the rule setR. If the methodology
in Algorithm 1 is performed to the rule set, and the new
rule set S can be obtained from this operation, then we
denote the operator by

The future state can be predicted through the recon-
structed algorithm in Figure 3, let’s also denote the
following operator:

Given a set of data (yk, yk-1, ..., yk-n, uk, ..., uk-m), for
the current state, Figure 3 illustrates the flowchart that
predicts the future states ŷk+1, ŷk+2, ... using the fractal-
transformed rule set S. The reconstructed algorithm
in this figure can also be expanded to a wider situation
that requires on-line identification of the generalized
NMPC (4). The following can be easily attained by:
Property 2: Fractal Equivalence. Consider the

following dynamic system:

and n sets of rules R1(d1), R2(d2), ..., Rn(dn), directly
obtained from (15). In case that

then

also

where i ) 1, ..., n
Proof: See Appendix 1.
The validity of the above fractal transform can be

summarized in the following: (i) The rule set S is
usually much smaller than R. (ii) The reconstruction
of the rule set by Figure 3 using S may yield a better
estimate of the future states than the original search
of R because finding the rule to exactly match the
current states in R is not possible. However, in S,
current state can more likely be reconstructed exactly
if no measuring noise exists by selecting an appropriate
magnification factorM in (10). This indicates that S is
actually more “dense” than R. (iii) If the condition in
Property 2 is true, on-line identification is not required
to solve the NMPC problem (4).

3. Numerical Examples

Three realistic examples are simulated in this section
to demonstrate the validity of a fractal-transformed
rule-based model. The first one is the temperature
control of a single-input-single-output (SISO) CSTR
control problem, and the second example is the tem-
perature and compostion control of a multi-input-multi-
output (MIMO) jacketed CSTR. The above two ex-
amples are studied in our previous work (Peng and
Jang, 1994). In the SISO CSTR, the output composition
of the product (Ro) is manipulated by inlet temperature
(Ti) and the inlet composition (Ai) is an unmeasurable
disturbance. In the MIMO CSTR example, inlet flow
rate (W) and coolant flow rate (Wc) are used to manipu-
late the reactant composition (CA) tank temperature (T).
Figure 4 shows the schematic plot of a high-purity
column that separates methanol from water. The
design parameters are displayed in Table 1, while the
steady state data are displayed in Table 2. This latter
table reveals that the distillation column is actually a
high-purity column with top product xD ) 0.998 and
bottom xB ) 0.001. The dynamic model of the column
is given in Appendix 2. The simulation is based on a
rigorous material and energy balances equation of the
tray-by-tray system. A comparison of two conventional
controllers were made in Figure 4. The manipulated
variables are (i) the reflux flow rate that manipulates
the top composition and (ii) the heat duty that manipu-
lates the bottom composition. For simplification, both
compositions are assumed to be measured on-line
without any time delay. Moreover, the two levels in the
sump and the accumulator are assumed to be perfectly
controlled. On-line testing indicated that a n ) 3, m )
3 rule-based model is sufficient for NMPC, although the
system orders are actually very high. In this case, a
comparison is made of the case in which only the top
product is controlled (SISO) with that in which both
compositions of top and bottom are controlled (MIMO).
3.1. Fractal Analysis of the Rule-Based Model.

One thousand rules based on the same control actions
∆u1, ∆u2, and ∆u3, but different initial conditions, are
obtained from the SISO CSTR example. Figure 5a
shows the experimental fractal dimensions plot for this
case. Figure 5b also shows the same case; however, the
number of the initial rules are 10 000. These figures
reveal that for both cases the fractal dimensions are

Figure 3. Flow chart of the reconstruction of a rule by searching
for a fractal rule-based model and predictions into the future.

S ) τ{R} (13)

ŷk+1 ) ø{S} (14)

yk+1 ) F(‚, uk, d) (15)

S ) τ(R1) ) τ(R2) ) ‚‚‚ ) τ(Rn) (16)

S ) τ(R1 ∪ R2 ∪ ‚‚‚ ∪ Rn) (17)

yk+1(di) ) ø(S) (18)
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roughly the same (D ) 0.0102344 for Figure 5a and D
) 0.0101234 for Figure 5b). Figure 6 shows a rule
reduction example in this SISO CSTR. It gives the rules
remained, number of elements in S, after fractal reduc-
tion with different numbers of initial rule set R that is
with the same control action. It shows that the number
of remaining rules after the fractal reduction is about
the same if the numbers of initial rules reaches to
15 000. This reveals the fact that, under this set of
control action, this 52 elements in S may represent the
dynamics of the system much more “dense” than its
initial rule set R. Furthermore, we found that with a
different Ai, the remaining rules after fractal reduction
are also the same. According to Property 2, on-line
identification is not necessary for a general NMPC.
Table 3 shows that the computer memories needed to
save the original rule set and the fractal transformed
rule set for the above examples. The computer used is
an IBM PC-486. It can be found from Table 3 that the
memories implemented to store the rule set is drasti-
cally reduced by the fractal analysis. It also can be
found in Table 3 that the CPU time needed using the
fractal condensed rule set is about the same with the
CPU time needed using the original rule set.

3.2. Nonlinear Model Predictive Control Using
Fractal-Transformed Rule-Based Model. Figure 7
shows that the fractal-transformed rule-based NMPC
performs much better than a well-tuned PID controller
for the case of SISO CSTR, if the inlet composition is
changed from 1 to 1.05. It should be noted that, in
Figure 7, the fractal rule-based model predictive control
performs a little better than our original method (Peng
and Jang, 1994). This is due to the fact that the fractal
rule model can be more “dense” than the original rule
set from which the fractal rule model is obtained.
Interestingly, the on-line identification for inlet compo-
sition is unnecessary as mentioned previously. Figure
8 summarizes the case of regulation control that 8%
Gaussian noise is applied to the measurement. Once
again, the fractal rule-based model predictive control
is superior to PID and our original method. Figure 9a,b
also compares the performances of the rule-based
NMPC and with a well-tuned PID controller for the case
of the MIMO CSTR example.
Figure 10 shows the on-line tracking of the system

dynamics for the top product under the case of xF ) 0.2
using both the fractal transformed model and the
original rule-based model that are obtained from the
case of xF ) 0.3. It can be observed from Figure 10 that
the fractal-transformed rule-based model can track the
model well, while the original model does not work. This
is due to the fact that Property 2 can be applied to the
change of inlet composition changes.

Figure 4. Schematic plot of the high-purity distillation column.

Table 1. Design Parameters of the High-Purity Column

feed composition XF (mol fraction) 0.3
top product composition XD (mol fraction) 0.999
bottom product composition XB (mol fraction) 0.001
feed flow rate (gmol/min) 45 000
feed temperature (K) 330
top product flow rate (gmol/min) 13 495
reflux flow rate (gmol/min) 15 128
bottom product flow rate (gmol/min) 31 505
heat duty (gmol/min) 13 496
pressure (kPa) 101.3
relative volatility 2.45-7.58
tray no. 38
feed position 10
tray efficiency 0.75
tray diameter (m) 3.2
reflux ratio 1.19
reboiler heat load (4.18 × 103 kJ/min) 1152
reboiler temperature (K) 372.5
reflux drum temperature (K) 337.7

Table 2. Light Key Component Steady State
Composition, Temperature, Liquid Flow Rate, and Vapor
Flow Rate Profiles

tray
no.

liquid
component

vapor
component

temp,
°C

vapor
flow rate

liquid
flow rate

1 0.0041 0.0249 99.107 27 495 59 028
2 0.0121 0.0700 98.020 27 439 59 000
3 0.0331 0.1672 95.362 27 408 58 943
4 0.0783 0.3146 90.444 27 577 58 912
5 0.1474 0.4597 84.750 27 967 59 081
6 0.2167 0.5615 80.755 28 345 59 471
7 0.2664 0.6210 78.672 28 594 59 850
8 0.2960 0.6529 77.671 28 734 60 099
9 0.3120 0.6693 77.189 28 807 60 238
10 0.3202 0.6777 76.954 26 886 60 311
11 0.3549 0.6963 76.062 26 982 13 391
12 0.3944 0.7181 75.187 27 094 13 487
13 0.4404 0.7420 74.298 27 217 13 599
14 0.4901 0.7665 73.418 27 344 13 722
15 0.5408 0.7905 72.543 27 407 13 849
16 0.5902 0.8135 71.664 27 591 13 974
17 0.6369 0.8351 70.786 27 705 14 095
18 0.6803 0.8550 69.923 27 813 14 210
19 0.7202 0.8732 69.100 27 912 14 317
20 0.7564 0.8897 68.336 28 004 14 417
21 0.7890 0.9046 67.648 28 088 14 508
22 0.8183 0.9180 67.048 28 163 14 592
23 0.8444 0.9299 66.538 28 231 14 668
24 0.8674 0.9403 66.115 28 291 14 736
25 0.8877 0.9495 65.774 28 344 14 796
26 0.9054 0.9575 65.504 28 391 14 849
27 0.9208 0.9644 65.294 28 431 14 895
28 0.9341 0.9704 65.136 28 465 14 935
29 0.9455 0.9755 65.017 28 495 14 970
30 0.9553 0.9799 64.930 28 520 14 999
31 0.9636 0.9836 64.867 28 541 15 024
32 0.9707 0.9868 64.822 28 559 15 046
33 0.9767 0.9894 64.790 28 574 15 064
34 0.9817 0.9917 64.768 28 587 15 079
35 0.9860 0.9936 64.753 28 598 15 092
36 0.9896 0.9952 64.743 28 607 15 102
37 0.9926 0.9965 64.737 28 614 15 111
38 0.9952 0.9980 64.733 28 623 15 119
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Figure 11 compares the regulation behavior using a
well-tuned PI controller and NMPC for the SISO case
of a high-purity column. The fractal-transformed rule-
based control is markedly superior to PI controller in
regulation control. In other simulation studies, the rule-
based model is also markedly superior to PI controllers
in servo control. Figure 12 also shows that the fractal-
transformed model is superior to a nontransformed case
for the case that the inlet composition is changed (xF
suddenly changed to 0.2 from 0.3). Since the prediction
of the rule-based model is not correct as shown in Figure
10 and an identification phase is not devised, our

original approach failed. However, the fractal-trans-
formed model works fine as shown in Figure 12. Figure
13 compares the performances of the fractal-trans-
formed rule-based control and the NMPC proposed
by Economou et al. (1986). We assume that both
controllers are all designed based on the wrong case (xF
) 0.3). Since the fractal-transformed rule-based model
can track the column dynamics well for xF ) 0.2 the
rule-based NMPC works fine. The NMPC using a
physical model with the wrong parameter (xF ) 0.3) may
work for regulation case because the system does not
deviate from its steady state too much during the

Figure 5. (a) Fractal dimension analysis of the SISO CSTR based
on 1000 rules. (b) Fractal dimension analysis of the SISO CSTR
example based on 10 000 rules.

Figure 6. Numbers of rules remained in the fractal-transformed
set S from the original rule sets R with different initial number.

Table 3. Comparison of Computer Memories for Storing
the Original Set (R) and Fractal Transform Set (S) for
Different Examples

computer
memory for
set R (MB)

CPU time
using set
R (s)

computer
memory for
set S (MB)

CPU time
using set
S (s)

SISO CSTR 88 1.1 1.3 0.21
MIMO CSTR 465 0.65 0.7 0.01
high-purity column

SISO case
21 0.08 3 0.1

high-purity column
MIMO case

80 0.2 3.1 0.08

Figure 7. Comparisons of regulation (Ai ) 1.05) behaviors of
the SISO CSTR example among (1) the fractal rule-based
model control, (2) original rule-based model control, and (3) PID
control.

Figure 8. Comparisons of regulation behaviors of the SISO CSTR
example with 8% noise among the (1) fractal rule-based
model control, (2) original rule-based model control, and (3) PID
control.

Figure 9. Comparisons of regulation behaviors with 8% noise
between a fractal-transformed rule-based NMPC and well-tune
PID controllers. (a) CA vs time; (b) temperature vs time.
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transient. However, if a set point change is imple-
mented, the system becomes unstable as shown in
Figure 13.
Figure 14a,b compares the MIMO distillation control

using the NMPC with that using the PI controller with

2% measuring noise. Once again, the NMPC performs
much better than PI controllers.

4. Conclusion

A fractal-transformed rule-based model was proposed
to perform NMPC in this work. The transformed model
could actually represent the system dynamics in a wider
range than the original rule-based model in the sense
that a different number of the original rules could be
transformed into the same rule set. Fractal analysis
results indicated that if the rule set with different values
of disturbances can be transformed to the same rule set,
then on-line identification would be unnecessary.
Furthermore, realistic examples including high-

purity distillation column were also simulated. The
simulation examples demonstrated that the fractal-
transformed rule-based model is markedly superior to
the conventional controllers.
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Nomenclature

D ) fractal dimension
d ) disturbances
m ) input order
n ) output order
NI ) identification horizon
NO ) optimization horizon
R ) rule set
S ) reconstructed rule set
t ) time
U ) discretized manipulated variable in the rule set
u ) manipulated input
x ) vector of state variables
Y ) discretized output in the rule set
y ) output variable

Greek Letters

µ ) membership function

Figure 10. On-line tracking of the top product dynamics if
the feed composition is xf ) 0.2 based on (i) a rule set obtained
from xf ) 0.3 and (ii) a fractal-transformed rule set obtained
for (i).

Figure 11. Regularity behavior (xF change from 0.3 to 0.2) of
fractal-transformed NMPC and PI controller for SISO high-purity
column.

Figure 12. Comparison of regular behavior (xF change from 0.3
to 0.25) between (1) fractal-transformed NMPC and (2) original
rule-based NMPC (Peng and Jang, 1994) but without an identi-
fication phase.

Figure 13. Comparison of regularity behavior (xF change from
0.3 to 0.2) and servo behavior (setpoint change from 0.998 to 0.9975
at t ) 150 min) between (1) fractal-transformed NMPC and (2)
physical-model-based NMPC (Economou et al., 1986).

Figure 14. Comparisons of regulation behavior (xF change from
0.3 to 0.2) between the fractal transformed NMPC and PI
controllers for MIMO high-purity column.
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ε ) tolerance
τ ) fractal analysis operator
ø ) prediction operator using a fractal transformed set

Superscripts

ˆ ) predicted value
- ) measured value

Subscripts

k ) current time

Appendix 1. Proof of Property 2

Consider S ) {Ri}, then for any yRi, there exists a
xS and scaling factorM such that (10) holds, where i )
1, ..., n. Since S ) {Ri} for all i, so for all

there exists a x ∈ S and scaling factorM such that (10)
holds. This concludes the proof.

Appendix 2. Physical Model of the High-Purity
Distillation Column
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y ∈ R1 ∪ R2 ∪ ... ∪ Rn

Tray Model

Material Balance
dMn

dt
) F + Ln+1 + Vn-1 - Ln - Vn

Component Balance
d(xiMn)
dt

) Zi,fF + xi,n+1 + yi,n-1Vn-1 - xi,nLn - yi,nVn

Energy Balance

d(hn
LMn)
dt

) hFF + hn+1
L Ln+1 + hn-1

V Vn-1 - hn
LLn - hn

VVn

dhn
L

dt
) 0

Liquid Hydraulics

Ln ) CFn
LwlenHow

1.5

(C: unit conversion constant)

(wlen: Francis weir)

Vapor-Liquid Equilibrium

yi,n ) EnKi,nxi,n S Ki,n )
yi,npi,n

s

Pn

Reboiler Model

Material Balance
dM
dt

) L1 - V0 - B

Component Balance
d(xb,iM)

dt
) x1,iL1 - y0,iV0 - xb,iB

Energy Balance

d(hb
LM)
dt

) h1
LL1 - h0

VV0 - hb
LB + QR

V0 ) (hbLB + hb
L dM
dt

+ M
dhb

L

dt
- h1

LL1 + QR)/h0V
Vapor-Liquid Equilibrium

y0,i )
γiPi

s

P0
xb,i

Condenser Model

Material Balance
dMn

dt
) Vn-1 + Fn - Ln

Energy Balance
d(Mnhn)

dt
) Fnhf,n + Vn-1Hn-1 - Lnhn + Qn

Qn - (hn - Hn-1)Vn-1 ) Fn(hn - hf,n)
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