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Control of Constrained Multivariable Nonlinear Process 
Using a Two-Phase Approach 

Shi-Shang Jang,+ Babu Joseph,*+ and Hiro Mukail 
Chemical Engineering Department and Department of Systems Science and Mathematics, 
Washington University, S t .  Louis, Missouri 63130 

A computer-based algorithm is presented for the control of complex process units which are 
characterized by difficult features such as nonlinear input/output relationships, multivariable nature, 
operational constraints, imprecise models, and inadequate measurements. A two-phase algorithm 
is proposed to  deal with these difficult features in a direct manner. The algorithm makes use of 
approximate process models which take into account significant physical and chemical events in 
the process. The first phase of this algorithm consists of identifying unmeasured disturbances and 
the parameters and states of the approximate model using measurements from the immediate past. 
This identified model is then used in the second phase to predict the future behavior of the process 
and to select an appropriate control action. Application of the algorithm to a highly nonlinear, 
difficult-to-control CSTR system shows the advantages of this approach over other approaches which 
are based on linear models. Robustness in the presence of plant/model mismatch and immunity 
to measurement noises are also illustrated. 

Most regulatory control problems in the process industry 
are handled well by the traditional PID-type feedback 
controllers which are relatively inexpensive and well un- 
derstood. However, there are a number of complex process 
operations which still present challenging problems in 
control for a variety of reasons. The reasons most often 
cited in the literature (Foss, 1973) include the following. 

(i) Process Nonlinearity. This limits the applicability 
range of controllers based on linear models. 

(ii) Multivariable Nature. A unit may have more than 
one control variable and more than one output variable 
to be controlled. 

(iii) Inadequate Measurements. The variables to be 
controlled may not be directly measurable on line. In such 
a case, the process must be controlled by using secondary 
measurements. 

The control system must 
maintain process variables within certain bounds using 

(iv) Process Constraints. 

Chemical Engineering Department. * Department of Systems Science and Mathematics. 

bounded inputs. Moreover, it must be able to deal with 
these constraints even when the constraints change with 
time. 

Modern control theory, developed in the 1960s, has not 
found much acceptance by the process industry, primarily 
because the theory did not address many of the above 
issues which were critical to the process industry. How- 
ever, the availability of on-line process computers spurred 
the development of many new algorithms for computer 
control. Examples are Dynamic Matrix Control developed 
at Shell (Culter and Ramaker, 1979), Model Algorithmic 
Control developed in France (Richalet et al., 1978), and 
Inferential Control (Brosilow, 1979). Garcia and Morari 
(1982) discussed these and similar algorithms from a 
theoretical point of view and coined a new name, Internal 
Model Control, to represent this class of algorithms. 

The success of these algorithms can be attributed to the 
following important features: (i) relative ease in generating 
the process model, (ii) the ability to utilize process mea- 
surements to compensate for unmeasured disturbances and 
modeling errors, and (iii) the use of a filter in the feedback 
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point. Constraints on manipulated variables and output 
variables are incorporated at  this stage. The inversion 
might take the form of a least-squares problem as in DMC 
(Cutler and b a k e r ,  1979) or of a quadratic programming 
problem as in MAC (Richalet et al., 1978). 

Extension to Nonlinear Processes 
There have been a number of attempts to extend the 

above internal model control algorithms and apply them 
to nonlinear processes. Garcia (1984) proposed an ap- 
proach which uses local linearized approximations of the 
process. As the process operating conditions change, the 
linearized model is revised. Astrom and Wittenmark 
(1973) proposed an adaptive controller called a self-tuning 
regulator which uses an on-line identification scheme to 
update the linear model of the process. Application of 
adaptive control techniques to chemical processes can be 
found in Harris et al. (1980), Kiparissides and Shah (1983), 
and Zanker (1980). Here the linear parametric model of 
the processes is updated using a least-squares estimator. 

For this algorithm a linear model of the form 

4-9 MODEL 

1 Eslm"rd D~SlurbmCB 

IS1 

Figure 1. Block diagram for linear inferential (internal model) 
control. 

path to increase the robustness of the controller. 
The feedforward nature of these algorithms guarantees 

stability if the model is perfect. If not, the system may 
become unstable. But by introducing a filter in the 
feedback path, stability has been retained even with 
modeling errors. Indeed, the filter gives a means for a 
direct tradeoff between controller stability and perform- 
ance. 

The basics of Linear Inferential Control are discussed 
in the next section. The concept is generalized for the 
nonlinear case. The paper concludes with an application 
study in which the regulation of a highly nonlinear CSTR 
process is considered. 

Linear Inferential Control 
Figure 1 depicts the block diagram of a linear inferential 

control system. The key elements of this control system 
are the process model G,(s), the controller G,(s) which 
approximates the inverse of the process, and the filter F(s) 
which slows down the feedback of information. The 
transfer function relationship is 

(1 - G,G,F)d + G,G,Fy, 
1 + G,F(G, - 8,) (1) = 

As can be seen if G ,  = G, (perfect model), the denom- 
inator becomes 1 and the poles of the system are the same 
as the poles of the process, the controller, and the filter. 
Hence, if the model is perfect, the system is stable provided 
that the controller and filter have stable poles and the 
original process is stable. Also to obtain good set-point 
tracking, one should attempt to make G,G,F as close to 
unity as possible. In other words, choose 

G,F = G,-' (2) 
the limitation being the invertibility of the process. Time 
delays and RHP zeros in G,(s) will make the exact inverse 
unrealizable. Approximations to the inverse must be 
sought in such a case. Recently, some improvements of 
the IMC structure regarding this problem have been 
achieved by introducing a second feedback loop (Stepha- 
nopoulos and Huang, 1985) or by modifying the controller 
structure such that the poles (in the z-domain) of the 
system can be brought as close to the origin as possible. 

In practice, most computer implementations either (i) 
use convolution models for representing the process or (ii) 
use a least-squares theory or quadratic programming to 
invert the process model. A typical computer implemen- 
tation goes as follows. 

(i) Prediction Step. Use the knowledge of past control 
actions to predict current and future outputs of the pro- 
cess. 

(ii) Correction Step. Use current measurements to revise 
the model predictions. Usually a simple scheme such as 
a shift in the output is used. 

(iii) Inversion Step. Solve for the control actions to be 
taken in the future to keep the output close to the set 

is used where 

a(z-1) = a0 + a1z-1 + ... + ay,-lz"-l 

P(z-1) = Po + plz-l + ... + pr-lzr-l 

and b is the dead time. On the basis of the concept of 
minimum variance control, the control action is given by 

where 

eT(k) = [(YO, a19 * * * ,  awl, P O ,  Pr+b-11 

x T ( k )  = 
[y(k), y(k-1), ..., y(k+n-1), m(k),  ..., m(k-r-b+l)] 

BT(k) is updated recursively by using a least-squares es- 
timator. 

This adaptive approach has mainly been applied to 
single-input/single-output systems. A major instrumen- 
tation manufacturer is now offering such a controller 
commercially. 

An alternative approach is to use the nonlinear process 
models directly in the control of the process. In the past, 
this approach was not used mainly because of heavy com- 
putational load in such an approach. However, the com- 
putational load can be kept light by using low-order models 
which retain the important features and which contain 
enough adjustable variables (parameters) which can be 
estimated on-line by using current measurements. This 
results in a two-phase approach, which is outlined next. 

The approach is based on an approximate process model 
of the form 

= f ( v w , t )  (5) 
where x = state variables, m = manipulated inputs, and 
p = unmeasured disturbances and unknown parameters. 

h(x,m,p,t) 5 0 (6) 

z = g ( v w 4 t )  (7) 

The operational constraints are of the form 

In addition, a set of measurements ( z )  given by 

are also assumed to be available. These measurements 
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Figure 2. Structure of a regulator controller using a two-phase 
approach. 

may be corrupted by noise. The objective of the control 
system is to keep a set of outputs 

Y = w(x,m,p,t) (8) 

close to their set points, ye, while maintaining various 
variables within their constraints. 

The two-phase algorithm can now be outlined as follows: 
Phase I: Identification Phase. Determine the un- 

measured states ( x )  and unknown variables (p) from the 
measurements (z). 

Phase 11: Control Phase. By use of the process model 
identified above, determine the control actions, m(t) to be 
taken to keep the predicted output, y ( t ) ,  close to the de- 
sired value. 

Figure 2 shows the schematic of the proposed algorithm 
for nonlinear systems. Although represented as a block 
diagram, it must be remembered that normal block dia- 
gram manipulation rules will not hold in this case. The 
identification block serves to collect available measure- 
ments from the process and to update the current infor- 
mation on the variables x and p .  The controller block 
computes the controller actions to be taken so that the 
output variable is brought close to the set point in the near 
future. The filter block slows down the control action and 
is used to increase the robustness of the algorithm. Each 
block is discussed in detail next. 

Identification Block 
Since the identification must be carried out on line by 

using discrete measurements of 2, it  is advantageous to 
formulate the problem in discrete time. The variables, p ,  
are time varying in nature, so we focus our attention over 
a small time horizon in the past over which these variables 
can be assumed to be constant. This reduces the problem 
to estimating p and the value of x ( t )  a t  the beginning of 
the time horizon. 

Further, for convenience in stating the identification 
problem, we will assume that the measurements are taken 
a t  equidistant intervals in time although this is not nec- 
essary in the implimentation. 

Let i denote the present time. Let us say that the 
differences between the model predictions and the current 
observations are large enough to indicate a change in the 
model parameters or the presence of some new disturb- 
ances. Measurements from the past are used to update 
the model and the estimates of the disturbances. We shall 
use the least-squares criterion to determine the goodness 
of fit (i.e., how good the estimates of the model parameters 
and disturbances are). The identification problem can be 
stated as follows: Given a set of observations, ~ ( 0 ,  %(FATi), 
..., z(f-N,AT,), determine xo and p such that 

(9) 

is minimized subject to the constraints i = f(x,m,p,t) ,  
x(t-NiATJ = xo, zj = g(x,m,p,t,), ti = t - jAT,. 

This is an equality-constrained optimization problem 
which can be solved by a nonlinear programming method. 
Many efficient computer codes using generalized reduced 
gradients or successive quadratic programming techniques 
are available to solve this. 

The presence of constraints in the form of ordinary 
differential equations will generally require a slight mod- 
ification of the way in which the gradient of the objective 
function is evaluated. For a discussion on this and al- 
ternative approaches to identification, see Jang et al. (1986, 
1987). 

This approach can readily accommodate measurements 
that are not equidistant and measurements that may be 
delayed in time (due to sampling and analysis). 

Since these optimization problems must be solved on 
line, it is advantageous to use reduced-order models which 
approximate the process. Poor model structures will make 
it difficult to match the model to the observations, and this 
in turn will lead to poor control. In many situations, a 
variety of models, of differing complexities, are available. 
The choice of the model involves a tradeoff between com- 
putational efficiency (Le., cost of control) and controller 
performance. Past data from a plant can be used to de- 
termine the adequacy of the model used for on-line control. 

Not much discussion exists in the literature regarding 
the use of nonlinear models for on-line estimation and 
control. One approach that has been suggested is the use 
of the extended Kalman filter for estimating states and 
parameters of nonlinear processes. We have made com- 
parison between the identification approach proposed here 
and the extended Kalman filter, and the results are re- 
ported in Jang et al. (1987). Our findings indicate the 
identification method used in the two-phase approach to 
be superior to the extended Kalman filter. 

An important issue is the frequency with which this 
identification must be executed. One indicator which 
signals the need for the execution of the identification is 
the difference between the model predictions and the 
process measurements. We used a 5% change in the 
variable p to trigger the identification phase. Observe that 
unnecessary, frequent execution of the identification phase 
need not lead to better performance of the control system 
because, when the system is relatively calm for a while, the 
above optimization problem tends to be ill-conditioned, 
thus making the yielded estimates of xo and p unreliable. 
Hence, when the system is relatively calm, identification 
should not be attempted. Also if ill-conditioning is de- 
tected, the identification phase should be aborted. 

The Control Block 
The function of the control block is to compute the 

manipulated input which will bring the controlled outputs 
closer to their set points. The approach taken here is the 
same as in the linear inferential control case, except the 
model inversion is done numerically. The control problem 
can be stated as 

where C#J = Cy, - y )2  subject to i = f(x,m,p,t), y = u(x,m,p,t), 
and h(x,m,p,t) I O .  

Once again for implementation, a discrete formulation 
is necessary. Assuming that control actions are imple- 
mented every AT, units of time, the control problem can 
be converted to 

subject to k = f (x ,m,p , t )  x ( Q  = x,; y = w(x ,m ,p , t ) ;  and 
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h(x,m,p,t) I 0 where the initial conditions, xo, can be ob- 
tained from the results of the identification phase. The 
manipulated variable, m(t), is assumed to remain constant 
on the interval AT,, Le., 

(12) 

The number, No, of subintervals will determine the number 
of optimization variables. If a gradient-based package, 
such as the GRG algorithm or Powell's SQP method, is 
used to solve the optimization problem of expression 10, 
then the gradient of the objective function needs to be 
evaluated. In order to do so, one needs to solve a set of 
adjoint equations as described by the following steps. 
Details of its derivation are given in our previous paper 
(Jang et al., 1986). 

Step 1. Integrate the state equations i = f(x,m,p,t) over 
the optimization horizon (f,f + NOAT,). 

Step 2. Solve the following adjoint differential equa- 
tions backwards 

m = mi t + (j - l)ATo < t I t + j A T ,  

q(t+NoAT,) = 0 (13) 
dt 

Step 3. Determine the gradient 

where the subscript i denotes the value determined at time 
f + iATo. 

The evaluation of the gradient thus requires the solution 
of ordinary differential equations in both identification and 
optimization phases. Any standard method may be used 
to solve the ODES. Possibilities include finite difference 
methods such Runge-Kutta and more complex collocation 
methods. An implementation using the method of collo- 
cation has been suggested by Biegler (1984). The appli- 
cation of this collocation algorithm is discussed in the 
Appendix. One disadvantage of the collocation approach 
is that m(t) is not expressed in a discrete form suitable for 
computer implementation. 

The Filter Block 
The introduction of a filter block in order to stabilize 

the feedback loop was first suggested in our situation by 
Brosilow (1979) and later described in Garcia and Morari 
(1982). The simplest form for the filter is a first-order lag, 
which delays the feedback of information through the loop. 
By making the filter time constant large enough, it is often 
possible to delay the feedback of information sufficiently 
to guarantee stability. The penalty paid is usually poor 
control. Thus, the filter time constant provides the process 
operator with a tunable parameter which can be adjusted 
to accommodate the modeling errors. 

In the two-phase approach, the filter block also serves 
the same purpose. The presence of modeling errors will 
lead to incorrect control actions. In such a case, the filter 
constant should be adjusted to guarantee stability even 
under the worst possible case. A simple form for the filter 
is 

(15) 

Lack of sufficient theory of nonlinear control precludes 
any quantitative analysis of the stability problem. For the 
linear system, Garcia and Morari (1982) provided some 
examples that illustrate the stabilizing nature of the filter. 

1-ff 

1 - ffz-1 
F(z) = - O < f f < l  

I I New Set of Measurements 

Compare 
With Model 

Filter Lrl 
I m 

Implement current 
Esiimates of I Manipulated Input 

Figure 3. Schematic of proposed algorithm. 

Effect of Constraints 
Constraints on the manipulated variables, m(t), may be 

directly incorporated into the above optimization problem. 
Constraints on process variables of the form h(x,m,p,t) I 
0 are not handled as easily. A recommended approach here 
is to require 

hi = h(xi,mi,p,ti) I 0 (16) 

that is, to require that the constraints be satisfied a t  the 
discrete time instants. Such converted constraints are 
readily incorporated into the optimization algorithm. 

The Algorithm 
Figure 3 shows the schematic of the proposed nonlinear 

control algorithm. The identification phase is executed 
whenever the difference between the model outputs and 
the process measurements exceeds a predetermined 
threshold value. This may be caused by model error, a new 
process disturbance, and/or a change in the process pa- 
rameters. The identification phase yields a new set of 
parameters which are used to compute the manipulated 
variables. The resulting control action is implemented. 
After an interval of length AT,, the calculations are re- 
peated. 

Please note that the above development is applicable 
to both simple and multivariable processes. Multiple and 
intermittent measurements can be readily handled. In- 
teraction among variables is taken into account in a natural 
manner, eliminating the need for decouplers, etc. 

Example 
The following example was originally discussed by 

Economou and Morari (1986). The process is a CSTR as 
shown in Figure 4. A reversible reaction is going on in 
the reactor: 

k+ 
k- 

A e R  

where the rate constants are in Arrhenius form: 

k ,  = C,e-Q+lKTo (17) 
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Figure 4. Continuous stirred tank reactor for the reaction A e R. 
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Figure 5. Comparison of different control strategies on the regu- 
latory control of the CSTR example: (1) two-phase approach; (2) 
PID; (3) self-tuning control, n = 3, m = 5, bo = -0.5, X = 0.95; (4) 
self-tuning control, n = 3, m = 2, b = 4, bo = -0.8, X = 0.97. 

Table I. Operating Conditions of the Reactor 

constants 
steady-state 

operating: conditions 
r = 6 O s  Ai = 1.0 mol/L 
c+ = 5 x 103 s-1 Ri = 0.0 mol/L 
c- = 1 x 106 s-1 A, = 0.492 
Q+ = 10000 cal mol-' R, = 0.508 

K = 1.987 cal mor1 K-' To = 430 K 
-A& = 5000 cal mol-' 

Topt = 434 K 
p = 1 kg/L 
C, = 1000 cal kg-l K-' 

Q- = 15000 cal mol-' Ti = 427 K 

Rapt = 0.5085 

The system consists of three state equations and one 
measurement equation 

1. reactant mass balance: 

2. product mass balance: 

(19) 
mo 1 - = -(Ri - R,) + k+A, - k-R, dt  T 

3. energy balance: 

4. measurement: 

Y = R o + r l  (21) 

where 
Design data of this system are given in Table I. Note 

that the set point of this problem is at  the maximum yield 
of the product for Ai = 1 g-mol/L. Therefore, for Ai < 1 

is assumed Gaussian and zero mean. 

t 0.495 

~~ ~ 

0 120 240 360 480 600 

ti m e  (sed 

Figure 6. Output response for the case of 2% decrease in the inlet 
reactant concentration (a = 0, No = 5,  AT, = 20 s).  

u 
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1 0.495 5 200 400 600 
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Figure 7. Effects of changing the filter constant with an integration 
step of 10 s (Ni = 40). Response to 2% increase in inert concen- 
tration. 

g-mol/L, the set point is unreachable. In this example, 
the inlet concentration, Ai, is chosen as the parameter to 
be identified. In addition, the unknown states, A,, and To 
are also estimated by the identification phase. The inlet 
stream temperature is selected as the manipulated variable 
of the system. The objective is to control the exit con- 
centration of R detected as CoUv Cout was chosen as the 
measure variable p in conformity with the earlier work of 
Economou and Morari (1986). 

Three types of controllers were implemented on the 
reactor. The first is the conventional PID controller. The 
second is a self-tuning regular (an adaptive controller) 
proposed by Astrom and Wittenmark (1973). The third 
is based on the two-phase approach as described above. 

Results 
In Figure 5,  the response of the three controllers to a 

2% step increase in the inlet reactant concentration is 
compared. The PID controller constants were tuned to 
yield the best performance using the reaction curve and 
Ziegler-Nichols tuning method. Two different adaptive 
controllers were implemented. The first is based on the 
linear model with parameters n = 3, m = 5,  and b = 0 in 
eq 3. The second controller employs n = 3, m = 2, and 
b = 4. Obviously, some improvement is possible here with 
further tuning of the parameters. The two-phase approach 
was implemented with the following set of parameters: Ni 
= 20, ATi = 1 s, AT, = 20 s, No = 5,  filter constant a! = 
0.7, and Euler's method of integration (with a step size = 
AT,). Both the identification and optimization problems 
were solved by using the Davidon-Fletcher-Powell method 
of optimization. It should be noted that AT, need not be 
the same as sampling ATi. AT, refers to the interval where 
the control action remains the same; thus it can be chosen 
arbitrarily. 
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Figure 8. Effects of changing the filter constant with an integration 
step of 20 s (Ni = 20). Response to 2% increase in inlet concentra- 
tion. 
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Figure 9. Effects of varying the optimization horizon (AT, = 10 s, 
a = 0.2). 

Figure 6 shows the response of the same set of controllers 
for a 2% decrease in the inlet concentration of Ai. The 
PID and STR fail to keep the process stable, mainly be- 
cause the disturbance has now made it impossible to 
maintain the outlet concentration at its original set point. 
The two-phase nonlinear controller recognizes this and 
brings it as close as possible to the original set point, but 
yielding a steady-state offset. In fact, this is the maximum 
possible outlet concentration for the new inlet concen- 
tration. 

In this case, where the set point is not attainable, integral 
action clearly should not be used in the PID controller. 
Indeed, a stable feedback controller can be obtained by 
using proportional action, but its reaction is very sluggish 
at  best. 

Figures 7 and 8 show the system responses for different 
values of the filter time constant. In the simulations 
represented in the figures, Euler’s method is used to solve 
the differential equations in the control block with an 
integration step of AT,. Note that the error in integration 
may be viewed as a modeling error. Clearly, the filter is 
not necessary for a small value of integration step AT, as 
shown in Figure 7 (where AT, = 10 s). But, as a larger 
value of integration step is used (e.g., AT, = 20 s in Figure 
€9, higher values of a help slow the feedback and stabilize 
the control system. 

Figure 9 shows the effect of changing the horizon of the 
controller. As expected, a longer horizon exhibits better 
control quality in this example. 

In Figure 10, the effects are compared of different in- 
tegration schemes used in the evaluation of the gradient 
in the optimization scheme. Euler’s method for solving 
differential equations in the optimization phase does not 
work as well as the method of collocations and the 
fourth-order Runge-Kutta method. The method of col- 
location generally works better than Euler’s method and 
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Figure 10. Effects of different integration algorithms on the per- 
formance of the two-phase regulatory controller (ATo = 20 s, No = 
5, (Y = 0.2, Ni = 40). 

0 200 400 600 BOO I 

t J m e  (sed 

30 

Figure 11. Effects of measurement noise with different values of 
the noise amplitudes (Ai = 1.07, Ni = 100, (Y = 0.7, AT,, = 20 s, No 
= 6). 

t 0.480 

0. 460 

0 200 400 600 BOO 1000 

t I me <sed 

Figure 12. System under high intensity noises (15%) for mea- 
surements A ,  and R,, Ni = 100, ATi = l s, No = 5, ATo = 20 s, Ai = 
1.06, a = 0.7). 

the Runge-Kutta fourth-order method in the control phase 
because of the high accuracy of this method, but it is not 
suitable in the identification phase because it converges 
more slowly than Euler’s or the fourth-order Runge-Kutta 
method when fitting equally spaced data to the model. 

Figures 11 and 12 show the output behavior when ran- 
dom noise is introduced in measurements. The process 
remains reasonably stable even in the presence of noise 
in measurements. Figure 11 shows the effects of the am- 
plitude of the noise. Note that the actual process values 
(before corruption by noise) are plotted in the figures. It 
is seen that higher amplitude yields poorer identification 
results, and hence the overall system becomes less stable. 
However, this problem can be solved by increasing the 
number of sampling (Ni). With high intensity noise, on- 
line identification can be improved by taking measurement 
of one more variable. Figure 12 shows the result of control 
with two simultaneous measurements of A,  and R,. The 
two-phase approach works very well even though the ad- 
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Figure 13. Effect of modeling error (controller setting same as those 
used in hgure 6). 
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Figure 14. Control with modeling errors on activation energy (+5% 
error in Q+ and Q-). Measurements used, A,, Ro; identified variables, 
To, Ai, Q+, 8-; AT, = 20 8; ATi = 1 9. 

ditional measurement of A,  as well as the original mea- 
surement of R, is influenced by the white noise of the same 
strength (&5% of the absolute value of real data). 

In an attempt to evaluate the robustness of the proposed 
nonlinear controller, a 10% error is introduced in the re- 
action rate expressions to produce a mismatch between the 
plant and the model used for identification. As seen in 
Figure 13, the resulting output shows some oscillations due 
to the error introduced but recovers to attain a steady-state 
value very close to the optimum one. 

If there exists some error in the activation energy in the 
model, it  is possible to identify parameters in exponential 
terms by using the horizon search. Figure 14 demonstrates 
the performance of the two-phase approach with four 
identified variables using two measurements. A single 
measurement is insufficient with this much error in the 
model. In the case of Ni = 40, the value of the identified 
variable (Ai) did not converge closely to its true value in 
the identification phase. Therefore, it is necessary to in- 
crease the number of samplings to 60 in each horizon in 
order to remove the offset as shown in Figure 14. 

Figure 15 shows the effect of adding constraints on 
process variables. This is also handled very nicely by the 
two-phase approach. The constrained optimization was 
implemented by using the GRG method. This was pre- 
ferred over the SQP method which leads to infeasible 
intermediate solutions. 

There exists an offset in the controlled variable for the 
constrained case. This is a natural consequence of re- 
stricting Tout to be less than 435, which implies that the 
output set point can no longer be attained. 

The CPU time required to do the control calculation is 
about 2 s on a VAX 11/750 computer. The identification 
phase takes about 4 s. We made no attempt to optimize 
the efficiency of the calculations although there are nu- 
merous ways to reduce the computing times. With the 
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Figure 15. Effect of adding operating constraints on state variable 
(To 5 435 K, Ai = 0.98, a = 0, AT, = 10 9). 

increasing power of on-line computers, computing times 
will not be a major issue. 

Conclusions and Significance 
The basic concepts behind model-based computer con- 

trol algorithms such as Dynamic Matrix Control are ex- 
tended to deal with nonlinear processes as well. A key 
feature of these algorithms is the model identification step 
where one tries to identify the process model based on all 
available operational information on the process. Follow- 
ing this concept, a new approach is proposed which consists 
of identification and optimization phases. The proposed 
two-phase approach relies heavily on the powerful new 
algorithms available for optimization and increased com- 
puting power available on line. Such on-line adaptation 
enables the use of a low-order approximate process model 
and the exploitation of all available process measurements. 
Availability of an identified process model provides the 
capability of forecasting the future process behavior and 
the capability of selecting the best control action, which 
will not violate any constraints. 

The algorithm was tested by using a simulated CSTR, 
in which a reversible first-order reaction is taking place. 
The nonlinearities introduced by the temperature depen- 
dence of the reaction rate term make the process quite 
difficult to control by conventional techniques. The 
two-phase approach proved to be superior to an adaptive 
(self-tuning) controller and a PID controller, which are 
based on linearized process models. The algorithm is 
shown to be insensitive to the choice of integration used 
(whether Euler's, fourth-order R-K, or collocation). 
Standard optimization packages were used in the algor- 
ithm. Any noise in the measurements is automatically 
filtered out by the identification process. The filter block 
used in the feedback path provides a convenient tuning 
parameter for operator to desensitize the system to mod- 
eling errors. 

The algorithm is also tested from the viewpoint of ro- 
bustness by deliberately introducing errors in such crucial 
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Appendix: Application of the Method of 
Collocation to the Optimization Problems with 
Ordinary Differential Equations as Its 
Constraints 

Consider the following optimization problem: 
min W(tf) ,m(tf) , tf1 (A-1) 
m(t) 

parameters as the activation energy. Although more 
measurements are required, the algorithm handled this 
situation rather well. The algorithm was also shown to be 
capable of maintaining good control in the presence of 
constraints on manipulated and output variables. 

The results of the application to the CSTR problem 
show that this approach has considerable promise in 
dealing with process nonlinearities, operating constraints, 
and noisy and insufficient set of measurements, all of 
which are very important factors when controlling chemical 
processes. The issues are addressed in a direct manner by 
the two-phase approach. 

We have not addressed theoretically the stability 
characteristics of the overall system for the nonlinear case. 
However, in the case of linear processes, this approach 
reduces to linear inferential model control, for which 
theoretical work exists. 
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Nomenclature 

A = reactant 
Ai = inlet concentration of the reactant 
A,  = outlet concentration of the reactant 
C, = frequency factor 
C = heat capacity gut = output concentration of the product 
F = transfer function of the filter 
G, = transfer function of the controller 
G, = transfer function of the process 
h = constraint function 
K = gas constant 
li = Lagrange interpolation coefficient 
m = manipulated variables 
n = order of the linear model 
Ni = number of observations for identification in the imme- 

diate past 
No = number of intervals for optimization 
p = parameters 
q = adjoint variables 
Q+ = activation energy 
r = order of the linear model 
R = product 
Ri = inlet concentration of the product 
R, = outlet concentration of the product 
t = time 
w = output function 
5: = state variables 
xo = initial states 
y = measurable outputs 
ys = set point 
z = measured variables 
i = actual measurements 
Greek Symbols 
a = parameters of a linear input/output model 

= parameters of a linear input/output model 
p = density 
T = time constant 
9 = parameter vector 
7 = white noise 
ATi = measurement sampling interval 
AT, = time interval in which control stays constant 
@ = objective function 

T = dead time 
Superscript 
T = transpose of a matrix 

4 = (Y, - YI2 

s.t. 

using polynomial approximations 

(-4-5) 

Here to = 0 and ti, i = 1, n are zeros of an nth-order 
Legendre polynomial defined from 0 to t f .  The control 
profile may also be approximated by 

(A-6) 

Then eq 10 can be replaced by 
min @.[yn(tf),mn(tf),tfI 64-71 
[ Y i F i )  

s.t. 
ri = dyn(ti)/dt - f(yi,mi,ti) = 0 i = 1, ..., n (A-8) 

h(tp,yn(tp,m,(tp))) = 0 (A-9) 

g(tp,yn(tp,mn(tp>)) 5 0 (A-10) 

where t ,  represents the point constraints that are consid- 
ered in the optimization problem. Hence eq A-7 is in the 
general form of the nonlinear programming problem 
without differential equations and can be solved by a 
general purpose nonlinear programming package. 

After determining the optimal m(t) ,  the value of m(t)  
is implemented at the current time. One disadvantage 
with this approach is that m(t) is computed assuming it 
to be continuous in time, whereas it is implemented as a 
discrete function in time. 

The procedure of implementing the above algorithm in 
the two-phase approach is as follows. 

Step 1. Solve eq A-7 by using appropriate nonlinear 
programming packages (e.g., D-F-P method for uncon- 
strained case, GRG or Powell’s method of constrained 
case). 

Step 2. Use Lagrange interpolating polynomial to find 
the value of m(t) at  time 0.5AT,. 

Step 3. Control the process using the new value of 
manipulated variables calculated in step 2 during the time 
period (O,AT,). 

Step 4. Move the zero of the horizon to AT,; go back 
to step 1. 
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Hydraulic Characteristics of Sieve and Valve Trays 
Samuel 0. Fasesan* 
Department of Chemical Engineering, University of Manchester, Institute of Science and Technology, 
Manchester, England, U.K. 

The hydraulic characteristics of sieve and Koch type-T valve trays have been measured in a 0.63- 
m-diameter absorption column, with air-water system. The parameters measured include dry-tray 
pressure drop, hydrostatic head of liquid measured a t  the tray center, and total pressure drop. The 
operating conditions and equipment employed are representative of those encountered in industrial 
practice. The measured data compared favorably with few reliable data existing in open literature. 

The sieve tray and the valve tray are widely used dis- 
tillation column internals. Sufficient and reliable data on 
their hydraulic characteristics are still required for better 
accurate design purposes. 

Eduljee (1958) expressed the dry-plate pressure drop for 
sieve plate as 

(1) 
vh2 PP AI', = 0.187- - 
c2 PI 

where uh = hole velocity, ft/s; APd = dry-tray pressure 
drop, in. of liquid; pp, p1 = densities of gas and liquid, 
respectively, Ib/ft3; and c = orifice coefficient, dimen- 
sionless, with value of 0.83 for l/,-in.-diameter hole. Sim- 
ilarly, the total pressure drop was expressed as 

(2) 
Ut = ( 0 . 1 8 7 ~  uh2 E) PP + hl + - 32.1 

where hl = height of liquid on tray, in. of liquid; and AP, 
= total pressure drop, in. of liquid. 

Bernard and Sargent (1966) measured the density of 
foam and integrated the vertical profile of foam densities 
to provide a measure of liquid holdup. Thomas and 
Campbell (1967) gave useful information on static liquid 
heads and dynamic heads. 

Kupferberg and Jameson (1970) collected data on 
pressure drop and clear liquid height from sieve tray in 
laboratory size equipment. These data were later sup- 
ported by the results of Kharbanda and Chu (1970) on 
hydraulic studies conducted on sieve tray. Furthermore, 
on the basis of experimental results, the latter authors 
derived an equation in the form of additive model for 
estimating total pressure drop in terms of head of liquid 
on tray, velocity through the hole, and terms including 
pressure drop through dry perforation. 

However, Eduljee (1972) remarked on the closeness of 
the two independent data of the two sets of authors 
mentioned above, especially for a total hydrostatic head 
of 57.15 mmHzO measured on sieve trays a t  minimum 
vapor velocity. 
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Thomas and Ogboja (1978) presented a useful review of 
the previous works on this subject. While Colwell (1981) 
developed a general correlation from data collected from 
rectangular columns, Dhulesia (1984) gave a modified 
version of the Hofhius and Zuiderweg (1979) correlation 
and also presented data collected from rectangular column. 

Bennett et al. (1983) obtained data in a 14-cm-diameter 
column for trays with small outlet weir heights ranging 
from 0 to 25 mm and also with tray designs exhibiting large 
surface tension pressure drop. Furthermore, these in- 
vestigators, among other things, presented a model for 
correlating height of liquid on the tray. However, the new 
corelation for APT put forward by these authors takes the 
form 

(3) 

where A P T  = total pressure drop, of liquid; APD = dry-hole 
pressure drop, m of liquid; AP, = pressure drop due to 
surface tension, m of liquid; and hL = height of liquid on 
tray, m of liquid. 

A P T  = A P D  + hL + AP, 

The dry-hole pressure drop, AP,, is defined as 

(4) 

where the value of a, according to Liebson et al. (1957), 
is given as 0.499. 

The term for the pressure drop due to surface tension, 
AP,,, as given in eq 3 is expressed as 

APg = ~ ( 5 )  
60 

gpldBmax 

where 

and where b = constant of value 1.27; dBmax = departure 
bubble diameter from seive tray, m; dH = hole diameter, 
m; and u = surface tension, N/m. 

In the case of the valve tray, Bolles (1976) put forward 
a model for dry-valve-tray pressure drop for the condition 
existing when all valves are open, while the total pressure 
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