Removing nitrogen oxides from Diesel exhaust via promoted NOx decomposition to have zero-pollution cars

Ta-Jen Huang, Professor, PhD in Chemical Engineering (tjhuang@che.nthu.edu.tw) Department of Chemical Engineering (www.che.nthu.edu.tw) National Tsing Hua University Hsinchu, TAIWAN

1

EUROFORUM

11th International CTI Conference

SCR Systems

Europe's biggest and best SCR conference CTI - Car Training Institute Conference7 to 9 July 2015, Stuttgart

HIGHLIGHTS

INNOVATION: Promoted NOx Decomposition by Electro-Catalytic Honeycomb DeNOx Control System for Future RDE Standards VECTO Tool / PEMS Testing Blue Sticker for Environmental Zone Control and OBD-Monitoring of SCR Systems Novel Titania / Vanadate SCR Catalyst-Powder SCR on Filter Systems Producing NH₃ via thermolysis Different Approaches for Urea Quality Sensors Optical Visualization for Efficient Catalyst Layout

PND should replace SCR.

[Ta-Jen Huang *et. al*, "Promoted Decomposition of NOx in Automotive Diesel-like Exhausts by Electro-Catalytic Honeycombs", Environmental Science & Technology, 49 (2015) 3711–3717.]

Electro-catalytic honeycomb (ECH)

De-NOx for Diesel cars but get away from the troubling SCR (selective catalytic reduction) system has been realized by Diesel de-NOx honeycomb catalyst, *i.e.* Electro-Catalytic Honeycomb (ECH) as described in the following paper on Promoted NOx Decomposition (PND). [Ta-Jen Huang *et. al,* "Promoted Decomposition of NOx in Automotive Diesel-like Exhausts by Electro-Catalytic Honeycombs", Environmental Science & Technology, 49 (2015) 3711–3717.]

The PND technology will certainly replace SCR. This is because the ECH for Diesel de-NOx is very much cheaper than the SCR system and free of operating cost, according to:

-- PND has much higher de-NOx rate (per treatment area) than SCR, *i.e.*, the catalytic honeycomb of PND, the ECH, is smaller than that of SCR.

-- PND does not need any reductant or other resource, being free of operating cost. Just like placing a TWC (three-way catalyst) converter, but the ECH is also free of engine AFR (air fuel ratio) control.

-- Higher NOx concentration leads to higher de-NOx rate (proven repeatedly and been according to Chemical Engineering principles).

-- PND is effective from 900°C down to 15°C (tested) and can be more effective at lower temperature (under 0°C) according to its principle.

-- PND can treat NOx to **zero** NOx emission (tested). Thus, **zero-pollution** cars become possible.

Thus, highly efficient engines can be designed without any constraint by environmental regulations.

The PND device for automotive usage is Electro-Catalytic Honeycomb (ECH), which is based on the novel electrochemical double-cell (EDC)

Oxidan

The **PND** device of **Electro-Catalytic** Honeycomb (ECH) has been granted EU, US, JP, TW, CA, KR, PRC patents.

10: Electro-catalytic honeycomb (ECH) 11: Anode, forming ECH structure 111 & 112: outer & inner surface of the anode structure 12: Exhaust flow channel 13: Shell, covering the outer surface of the anode structure 20: Electrolyte layer, coated on the inner surface of the anode structure 30: Cathode layer, facing the exhaust flow channel for exhaust treatment

Principle of facial oxygen desorption

The removal of the O species in NO_X had long been studied by direct decomposition of NO_X (NO plus NO₂): It is basically NO \leftrightarrows N + O over catalyst with 2N \rightarrow N₂ easily.

Thus, $2NO \rightarrow N_2 + 2O$; $NO_2 \rightarrow NO + O$ [Note that there is no reducing agent involved] Fortunately, the overall reaction of decomposition of NO_X in automotive exhaust is exothermic; this is very important for $deNO_X$ at engine cold start.

However, the formed O species is strongly adsorbed on conventional catalysts and thus facile desorption of the O species as gaseous O_2 is key for NO_X decomposition. (facile oxygen desorption)

Since the presence of a voltage can weaken the chemisorptive bond strength of the O species [C.G. Vayenas, S. Bebelis, Catal. Today 51 (1999) 581], facile oxygen desorption is realized in an electrochemical cell, which can selfgenerate such a voltage. This voltage is called the open-circuit voltage in the field of fuel cells, and is generally called the electromotive force (*emf*).

Thus, **PND** is direct decomposition of NO_{χ} with <u>emf</u>-promoted facile oxygen desorption, and can occur in any electrochemical cell.

5

Principle of promoted NO_x decomposition (PND)

Schematic description of bi-pathway dominated **oxygen reduction** on Solid Oxide Fuel Cell cathode

[M. Gong, R.S. Gemmen, X. Liu, J. Power Sources 201 (2012) 204]

The mobile oxygen (O⁻) over the cathode surface can promote the oxidation of hydrocarbons (HCs) to result in complete oxidation of HCs

[T.J. Huang et al., Applied Catalysis B 110 (2011) 164]

A real-world device of electro-catalytic honeycomb (ECH) has been invented for the novel technology of promoted NO_X decomposition (PND). The ECH's deNO_X (NO_x to N₂---consuming nothing) rate is higher than NH₃-SCR's per treatment area.

Experimental testing of ECH-deNO_X on Diesel exhaust: The diesel engine: 0.219 liter, Yanmar L48N6-METMYI, made in Italy. The analysis equipment: Flue gas analyzer, testo 350-XL, USA. Further testing has been carried out with a diesel lifting car.

No reagent or other resource was consumed in ECH-deNO_x, because the ECH converter is simply placed in the exhaust pipe—there is no supply of any reagent or other resource.

ECH converter

Typical testing results of **ECH-deNO**_x on Diesel exhaust

Experimental testing of **ECH**-deNO_X on lean-burn (Diesel-like) gasoline exhaust

[The testing results have been reported in T.J. Huang et al., *Environ. Sci. Technol.* 49 (2015) 3711]

Experimental evidences for Higher NO concentration can lead to higher $deNO_X$ rate, without consuming any resource

Comparisons with SCR (1) For SCR-deNO_x onboard of heavy-duty Diesel vehicles with commercial V_2O_5/WO_3 -TiO₂ catalyst on standard metal substrates with a cell density (~honeycomb) of 400 cpsi, the highest activity for 1000 ppm NO at 52,000 h⁻¹ & 400 °C is

> **1.24 μmole NO·min⁻¹·cm⁻².** [O. Krocher, M. Elsener, *Appl. Catal. B: Environ.* 75 (2008) 215]

(2) SCR-deNO_x activity of 0.024 μmole NO·min⁻¹·cm⁻² was reported for treating 250 ppm NO at 200 °C with catalyst plate. [X. Fan et al., Catal. Commun. 12 (2011), 1298]

A comparison of **ECH** and **SCR**

	ECH	SCR
Reductant	No need, noting that PND is pure decomposition	Need ammonia from thermolysis of urea solution
Operation temperature	No limit (from ambient temperature up)	Needing ~200°C or higher operation temperature
During cold start	High deNOx efficiency	Ineffective
N ₂ O	Does not produce	Will produce
deNOx efficiency	Relatively high	lower
Complete deNOx for zero NOx emission	Can be realized	Not probable without ammonia slip
EGR (exhaust gas recirculation)	Not required	Required to reduce the consumption of urea solution
Controlling system and analyzers	Not required	Required for real-time NOx treatment, e.g. controlling the injection of proper amount of urea solution
Other	With the combustion temperature being no longer limited, soot can be reduced to very low level so that DPF may not be required or at least there can be no need to regenerate the CDPF	Needing DPF (diesel particulate filter) or CDPF (catalytic diesel particulate filter) 12

Typical characteristics observed from testing both Diesel and gasoline exhausts for Promoted NO_X Decomposition

- Higher NO concentration can lead to higher deNO_X rate, without consuming any resource. Thus, the combustion temperature is no longer limited by NO_x formation (EGR is no longer needed) and the fuel efficiency (thermal efficiency) can be highly increased.
- Higher O₂ concentration can lead to higher deNO_x rate.

Thus, high enough O_2 concentration in association with high enough combustion temperature can result in complete combustion of all combustible constituents in the fuel for their zero pollution. PM can be combusted or at least be less toxic.

No temperature window and effective deNO_X from engine cold start.

Thus, there is no $deNO_{\chi}$ treatment delay or period of non-treatment. This is because the overall reaction of automotive NO_{χ} decomposition is exothermic, and lower temperature can result in higher *emf*, *i.e.* higher promoting force for PND.

Relatively-constant deNO_X rate at very low NO_X concentrations for zero NO_X emission.

These characteristics show that NO_X is no longer an issue.

Publications supporting

the described typical characteristics of PND

underlined is the inventor of the ECH, Professor Ta-Jen Huang

- Ta-Jen Huang, C.L. Chou, *Electrochem. Comm.*, 11 (2009) 477–480.
- <u>Ta-Jen Huang</u>, C.L. Chou, *J. Power Sources*, 193 (2009) 580–584.
- <u>Ta-Jen Huang</u>, C.L. Chou, *J. Electrochemical Society*, 157 (2010) P28–P34.
- Ta-Jen Huang, C.L. Chou, *Chem. Eng. J.*, 160 (2010) 79–84.
- Ta-Jen Huang, C.L. Chou, *Chem. Eng. J.*, 162 (2010) 515–520.
- Ta-Jen Huang, I.C. Hsiao, *Chem. Eng. J.*, 165 (2010) 234–239.
- Ta-Jen Huang, C.Y. Wu, Y.H. Lin, *Environmental Science Technology*, 45 (2011) 5683–5688.
- Ta-Jen Huang, C.Y. Wu and C.C. Wu, *Chem. Eng. J.*, 168 (2011) 672–677.
- Ta-Jen Huang, C.Y. Wu, C.C. Wu, *Electrochem. Comm.*, 13 (2011) 755–758.
- Ta-Jen Huang, C.Y. Wu, C.C. Wu, *Chem. Eng. J.*, 172 (2011) 665–670.
- Ta-Jen Huang, C.Y. Wu, S.H. Hsu, C.C. Wu, *Energy Environmental Science*, 4 (2011) 4061–4067.
- Ta-Jen Huang, C.H. Wang, *Chem. Eng. J.*, 173 (2011) 530–535.
- Ta-Jen Huang, C.Y. Wu, S.H. Hsu, C.C. Wu, *Appl. Catal. B: Environmental*, 110 (2011) 164–170.
- <u>Ta-Jen Huang</u>, C.Y. Wu, *Chem. Eng. J.*, 178 (2011) 225–231.
- Ta-Jen Huang, C.H. Wang, *J. Electrochemical Society*, 158 (2011) B1515–B1522.
- Ta-Jen Huang, S.H. Hsu, C.Y. Wu, *Environmental Science Technology*, 46 (2012) 2324–2329.
- Ta-Jen Huang, C.Y. Wu, D.Y. Chiang, C.C. Yu, *Chem. Eng. J.*, 203 (2012) 193–200.
- Ta-Jen Huang, C.Y. Wu, D.Y. Chiang, C.C. Yu, *Appl. Catal. A: Gen.*, 445–446 (2012) 153–158.
- Ta-Jen Huang, C.Y. Wu, D.Y. Chiang, *J. Ind. Eng. Chem.*, 19 (2013) 1024–1030.
- Ta-Jen Huang, D.Y. Chiang, C. Shih, C.C. Lee, C.W. Mao, B.C. Wang, *Environmental Science Technology*, 49 (2015) 3711–3717.
- <u>Ta-Jen Huang</u>, C.W. Mao, C.C. Lee, D.Y. Chiang, C.S., B.C. Wang, S.Y. Lee, D.S.H. Wong, *Chem. Eng.* J., 284 (2016) 431–437.
- <u>Ta-Jen Huang</u>, B.C. Wang, C.C. Lee, C.W. Mao, *Electrochimica Acta*, 187 (2016) 442–450.

Further testing results of ECH-deNO_x on Diesel exhaust using ITRI/ACS ECH converter

ITRI/ACS ECH	NO _x In ppm	NO In ppm	NO ₂ In ppm	NO _x Out ppm	NO Out ppm	NO ₂ Out ppm	Inlet Exhaust Temp °C	NO _x Conversion %	NO _X -to-N ₂ Rate μmol N ₂ ·min ⁻¹ ·cm ⁻²
NO. 1	243	170	74	225	156	69	60	7.46	0.94
NO. 2	243	169	74	210	145	66	61	13.4	1.67
NO. 3	252	179	73	191	116	74	61	24.47	2.52 200 times
NO. 4	242	168	73	206	141	65	60	14.63	1.83 that of SCR
NO. 5	246	173	73	224	156	67	60	8.94	1.13

Note: The flow rate was kept at 110 liter/min. The oxygen concentration was about 18%.

It is seen that the **ECH's** NO_X -to- N_2 rate can be 200 times that of SCR-deNO_X, at 0.012 µmole $N_2 \cdot min^{-1} \cdot cm^{-2}$ as reported* for treating 250 ppm **NO** (with 10 ppm ammonia slip) at ~200 °C.

*[X. Fan et al., *Catal. Commun.* 12 (2011) 1298]

Higher O₂ concentration in the exhaust (over cathode) can lead to higher deNO_X rate

This **PND** characteristic can be attributed the Nernst equation for the generation of the *emf*, or called open-circuit voltage (OCV): *emf* (OCV)= (RT/4F)·ln ($P_{O2|cathode} / P_{O2|anode}$) Thus, higher O₂ concentration can lead to higher *emf* so to have higher promotion.

Inlet NO _x	Inlet O ₂	Inlet	Space velocity ^a	deNO _x rate	
concentration	concentration	Temperature	(10 ⁵ h⁻¹)	(µmole NO _x ·min ⁻¹ ·cm ⁻²)	
(ppm)	(%)	(°C)			
277	8 b	187	8.02	0.27	TT I I have a stat
2320 ^c	3.5	107	4.64	1.95	Environ. Sci. Technol.
2807 ^c		112	4.79	5.07	49 (2015) 3711]

^a Defined as (volumetric flow rate)/(honeycomb volume).

^b Secondary O₂ was added.

ECH-deNO_x on gasoline engine exhaust

^c Secondary NO_x was added. For these operations, part of the engine exhaust flow was diverted and thus the space velocity through the ECH was lowered for convenience of adding secondary NO_x .

No temperature window and effective deNO_x from engine cold start

It has been observed that:

Lower temperature can result in higher $deNO_X$ rate with NO_X in the high concentration region. This is due to that lower temperature can result in higher *emf*. Higher temperature can result in higher $deNO_X$ rate with NO_X in the low concentration region. This is due to that the surface-diffusion rate can increase with $_{17}$ temperature.

Additional notes on ECH-deNO_x

 Presence of H₂O and CO₂ beneficial by helping the reaction kinetics with surface-diffusion controlling.

- SO₂ OK [ECH-deSO₂ has been confirmed from 70 °C up].
- No N₂O formation since N₂O formation from NO involves a reductant, such as NH₃ [Koebel et al., *Catalysis Today* 59 (2000) 335]

Or H₂ [Clayton et al., *Appl. Catal. B-Environ.* 81 (2008) 161].

 ECH is completely ceramic and does not need to use any precious metal.

Ways of applying ECH to have fuel-efficient and zero-pollution cars Diesel way: A setup of ECH for replacing SCR system

& for cold start & cold weather---Replacing the SCR system by ECH & adding ECH before the DOC

Gasoline way: for cars with

Gasoline Direct-injection Compression Ignition (GDCI) engine --- Gasoline-powered Diesel-like engine

It is seen that the GDi engine is very much similar to the Diesel engine. In fact, the Gasoline-powered Diesel-like engine, the GDCI engine, can be considered as a simplified version of the GDi engine, i.e. removing the spark plug. How to achieve **zero pollution of** CO & HCs without PM?

[in association with the GDCI engine]

This can be achieved by using gasoline* of un-branched open-chain alkane molecules for GDCI engine.

*Gasoline that can ignite very easily under compression, that is, having high cetane number. [future clean gasoline]

Note: Fuels with higher cetane number have shorter ignition delay, so to have more complete combustion to result in higher combustion temperature. Thus, there can be no HCs & CO in the engine exhaust so to result in **zero pollution**. [Higher combustion temperature means higher NOx concentration in the engine exhaust. This is favored by PND with ECH.]

In addition, shorter ignition delay means less engine knock so to have more smooth and quiet engine. 21

Concluding Remarks

INNOVATION: Promoted NO_X Decomposition (PND) by **Electro-Catalytic Honeycomb (ECH)**

Typical characteristics of **PND**:

- Higher NO concentration can lead to higher $deNO_X$ rate, without consuming any resource.
- Higher O₂ concentration can lead to higher deNO_X rate.
- No temperature window and effective $deNO_X$ from engine cold start.
- Relatively-constant $deNO_X$ rate at very low NO_X concentrations for zero NO_X emission.

With complete combustion in the engine without any constraint, **ECH**-deNO_x can result in very high fuel efficiency with **zero pollution** of automobiles to help Creating Healthy, Livable Cities.